The 4th International Electronic Conference on Nutrients 16-18 October 2024 | Online # Plant Proteins for a Healthier Heart: A Meta-Analysis Approach ZABOUB Nada Malak*, BOUSSENA Sabrina, DIB Amira Leila Gestion de la Santé et Productions Animales Research Laboratory, Institut des Sciences Vétérinaires El-Khroub, Université de Constantine 1-Frères Mentouri, Constantine 25000 *E-mail: nada-malak.zaboub@doc.umc.edu.dz #### INTRODUCTION & AIM Cardiovascular diseases (CVDs) encompass a range of disorders affecting the heart and blood vessels, including conditions such as coronary artery disease, heart failure, hypertension, and stroke. These diseases are a leading cause of morbidity and mortality worldwide, often linked to lifestyle factors such as poor diet, physical inactivity, and smoking. Recently, there has been growing interest in the potential benefits of plant-based proteins for heart health, given their rich nutritional profiles and health-promoting properties. Plant proteins, found in foods like legumes, nuts, seeds, and certain algae, are not only low in saturated fat but also rich in fiber, antioxidants, and essential nutrients. Research suggests that incorporating these proteins into the diet may help manage and prevent CVDs. * This work aims to evaluate the impact of plant protein consumption on cardiovascular health by synthesizing findings from recent studies. We focused on how these proteins affect blood pressure, cholesterol levels, and inflammatory markers. #### **METHOD** - We conducted a meta-analysis of 20 scientific papers. - These papers are recent (2015-2023) sourced from: ScienceDirect, Google Scholar and **PubMed** - > Study Selection: We included studies that examined the effects of plant protein intake on cardiovascular risk factors, such as blood pressure, cholesterol levels, and inflammatory markers, focusing on those involving animal and human participants. - > Data Extraction: detailed data, including the type of plant protein, dosage, duration of intervention, and their effects on cardiovascular risk factors were extracted. - We used the key words: Plant-based Diet Cardiovascular Health Plant Protein and Cardiovascular Diseases Cardiovascular **Risk Factors** #### RESULTS | Table 1: Effect of Nuts and Microalgae on Blood pressure, Cholesterol levels and Inflammatory markers. | | | | | | | | | | | | |--|---|--|---|--|--|---------------------------|--|--|--|--|--| | Protein
source | Dose | Duration | Blood Pressure | Cholesteol Levels | Inflammatory Markers | References | | | | | | | Mixed nuts
(walnuts,
hazelnuts,
and
almonds) | 30 g/day of mixed nuts (15 g walnuts, 7.5 g hazelnuts). | median
follow-up
period of
4.8 years. | NM | *TC: Reduction of 10.9 mg/dL (5.1%). *LDL-C: Reduction of 10.2 mg/dL (7.4%). *LDL-C/HDL-C ratio: Decreased by 8.3%. *TC/HDL-C ratio: Decreased by 5.6%. | NM | Bitok and
Sabaté.,2018 | | | | | | | Almonds,
cashews,
pistachios,
peanuts,
and walnuts | intake of
≥60 g per
day. | various
durations to
analyze lipid
effects. | NM | *LDL-C lowered by 4.8
mg/dL .
*ApoB lowered by 3.7
mg/dL. | Significant reductions in CRP, though results were influenced by participant health status, nut type, and dose. | Bitok and
Sabaté.,2018 | | | | | | | Brazil nuts | 5g | 12 weeks | NM | Decreased LDL-c
Increased HDL-c- | IL-6, TNFα, MDA, CRP, Nf-kB-
Decrease | Silva et
al.2019 | | | | | | | Microalgae
(Arthrospira
platensis –
Spirulina) | *5.7g/day
* 6 g/day.
* 500
mg/day. | *7 weeks
*21 days
*4 weeks | Regulate blood pressure due to its high nutrient content. | *Lower LDL cholesterol
levels.
*Improve lipid profiles. | spirulina supplementation was linked to increased nesfatin-1 levels, a peptide associated with reduced inflammation. | Turnagöl et
al.2023 | | | | | | | Microalgae
(Chlorella
vulgaris –
Chlorella) | *300
mg/day . | *8 weeks | Regulate blood pressure due to its vasodilatory and antioxidant properties. | *Chlorella intake may
reduce LDL cholesterol.
*Improve lipid profiles
over longer durations. | Chlorella, when combined with exercise, enhances mitochondrial biogenesis, which is associated with reduced inflammation and improved energy metabolism. | Turnagöl et
al.2023 | | | | | | Table 2: Effect of Plant-based products on Blood pressure, Cholesterol levels and Inflammatory markers | Ι. | markers. | | | | | | | | | | | |--------------------|---|---|--|--|---|---|---|--|--|--|--| | d | Plant-based protein source | Dose | Duration | Blood pressure | Cholesterol levels | Inflammatory markers | references | | | | | | е.
е | legumes, nuts, grains, and soy products without isoflavones | NM | 4 weeks | NM | Improve
cholesterol profiles
(TC and LDL) | NM | Wayne W
Campbell. 2019 | | | | | | st
d
n
s. | DASH = plant protein
sources from fruits,
vegetables, whole grains,
nuts, legumes, and seeds +
of low-fat dairy, fish,
chicken, lean meats | NM | 8 weeks | Reduced both SBP and DBP. | NM | NM | Richter et
al.2015 | | | | | | e, | Soy protein
(low-isoflavone)
Lupin protein
Barley protein
Cowpea protein | From 25 to
30 mg/day. | 4 to 24
weeks. | Modest reduction in blood pressure | *Reductions in
total cholesterol
*Lower LDL-
cholesterol levels
*The reduction in
TG levels was
moderate. | NM | Christel
Lamberg-
Allardt et
al.2023 | | | | | | | Lacto-ovo-vegetarian diets | NM | 12 weeks | NM | NM | Modest reductions in inflammatory biomarkers such as CRP and White Blood Cells counts | Phillips et
al.2022 | | | | | | | Lupin Protein Isolate | 25 g/day | 4 weeks | Reduce blood
pressure.
It can help in
managing
hypertension. | Reduction in LDL-C levels (p ≤ 0.036). This reduction in "bad" cholesterol is a key factor in lowering cardiovascular risk. | Reduce inflammation-
associated CRP. | Angeles et al.2021 | | | | | | | Cowpea Vigna unguiculata
L. Walp. | 18-21 g/day | 28 days | Significant reduction in SBP. (due to he inhibition of ACE1) | Significant reductions in TC, LDL-C, non-HDL-C, and TAGs. | Potentially lowering levels of CRP. | Angeles et al.2021 | | | | | | | Pea protein isolates | 20 g/day | 16 to 30
days | Pea proteins inhibit ACE1, reducing blood pressure in hypertensive individuals. | Significant reductions in TC, LDL-C, TAGs, and an increase in HDL-C through upregulation of LDL receptors. | Pea proteins reduce vascular inflammation by modulating the NF-KB pathway and the ACE2 axis. | Angeles et
al.2021 | | | | | | | Soy, pea, lentils | 30-50g/
day,
depending
on
individual
study
protocols. | 6 to 24
weeks | Moderate reduction in blood pressure, with an emphasis on soy-based interventions. | Consistent decrease in LDL cholesterol (5- 10%), moderate decrease in total cholesterol. | Reduction in CRP and IL-6, but effects are more noticeable in participants with elevated baseline inflammation. | Becerra-Tomás
et al.2019 | | | | | | I
1 | Legumes, soy, nuts | NM | Several
years,
ranging
from 4 to
12 years. | Reductions of around 2-4 mm Hg in systolic blood pressure. | Decreases in LDL cholesterol, slight improvements in HDL cholesterol. | Noticeable reduction in CRP and TNF- α . | Becerra-Tomás
et al.2019 | | | | | NM: Not Mentioned, TC: Total cholesterol, LDL-C: Low-Density Lipoprotein Cholesterol, HDL-C: High-Density Lipoprotein Cholesterol, MDA: Malondialdéhyde, ApoB: Apolipoprotéine B, DASH: dietary approaches to stop hypertension, SBP: Systolic Blood Pressure, DBP: Diastolic Blood Pressure, TG or TAGs: Triacylglycerols, CRP: C-Reactive Protein, ACE1: Angiotensin-Converting Enzyme, NF-KB: Nuclear Factor kappa-light-chain-enhancer of activated B cells, **IL-6**: Interleukin 6, **TNF-α**: Tumor Necrosis Factor-alpha. #### CONCLUSION - ☐ These findings highlight the potential of plant proteins to improve cardiovascular health by lowering key risk factors such as high blood pressure, unhealthy cholesterol levels, and inflammation. - ☐ Including more plant-based proteins in the diet could be an effective strategy for preventing and managing cardiovascular diseases. - ☐ For better understanding the long-term benefits and mechanisms behind these effects further research is recommended - ☐ This study supports the inclusion of plant proteins in dietary guidelines for better heart health. ### REFERENCES - 1. . Bitok E, Sabaté J. Nuts and Cardiovascular Disease. Prog Cardiovasc Dis. mai 2018;61(1):33-7 . - 2. Angeles JGC, Villanueva JC, Uy LYC, Mercado SMQ, Tsuchiya MCL, Lado JP, et al. Legumes as Functional Food for Cardiovascular Disease. Appl Sci. 12 juin 2021;11(12):5475. - 3. Hüsrev Turnagöl H, Aktitiz S, İrem Baltürk Ş, Yakışıklı İ, Erbaş Z. Alternative protein sources in sustainable sports nutrition. Turk J Sports Med. 1 mars 2023;58(1):47-54. - 4. Lamberg-Allardt C, Bärebring L, Arnesen EK, Nwaru BI, Thorisdottir B, Ramel A, et al. Animal versus plantbased protein and risk of cardiovascular disease and type 2 diabetes: a systematic review of randomized controlled trials and prospective cohort studies. Food Nutr Res [Internet]. 28 mars 2023 [cité 24 sept 2024];67.