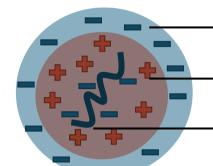


Effective Splicing Correction of SMN2 Gene in SMA Cells after Delivery of RNA Interpolyelectrolyte Complexes <u>Mariia Palagina</u>, Marianna Maretina, Anton Kiselev


Department of Genomic Medicine Named after V.S. Baranov, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia **E-mail:** <u>palagina.marie@gmail.com</u>

INTRODUCTION & AIM

- Splicing correction of the *SMN2* gene is a key treatment for spinal muscular atrophy.
- Intrathecal administration of antisense RNA oligonucleotides (ASOs) can cause side effects and requires repeated injections.
- The use of non-viral methods for the delivery of antisense oligonucleotides has the potential to facilitate the transition from intrathecal administration to intravenous infusion of these drugs.
- Ternary oligonucleotide--peptide complexes coated by anionic polypeptide are designed to overcome the impossibility of systemic delivery antisense RNA oligonucleotide.

METHOD

Ternary oligonucleotide—peptide complexes

Negatively charged E6p and cRGD-E6p coating for increased stability in biological fluids **Positively charged carrier** *R6p*

Antisense RNA oligonucleotide 3UP8 [2]

peptide coating E6p and cRGD-E6p (ligand-modified to αvβ3 integrins) [1] to deliver ASO 3UP8 [2] to a cellular model of SMA in the presence of serum, which corresponds to physiological conditions.
ds The RNA/anionic carrier charge ratios tested in this work:

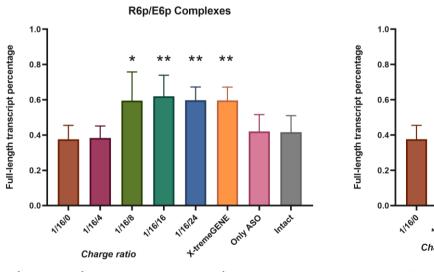
1/4, 1/8, 1/16, 1/24.

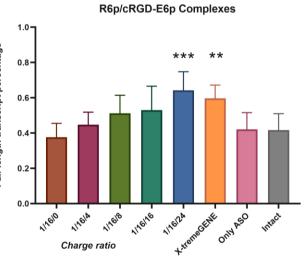
Previously, we developed a cationic peptide carrier R6p, and an anionic

The study involved transfecting SMA fibroblast cell culture with the serumstable oligonucleotide—peptide complexes, reverse transcription, semiquantitative PCR, and resazurin assay.

1. Transfection with interpolyelectrolyte complexes of primary fibroblast cell culture obtained from skin biopsy of patients with SMA II [3] in the presence of fetal bovine serum. **2.** RNA isolation. **3.** Reverse transcription. **4.** Semi-quantitative fluorescence PCR with primers for amplification of a cDNA fragment from 6 to 8 exons of SMN2 [4]. **5.** Visualization of PCR by electrophoretic separation of PCR products in 6% polyacrylamide gel. Gel staining with ethidium bromide. Estimation of the luminescence intensity of amplification products using the ImageJ. **6.** Calculation of the proportion of full-length *SMN* transcripts (*FL SMN*) to the sum of full-length and truncated SMN transcripts (Δ7 *SMN*) [5].

Resazurin Resorufin

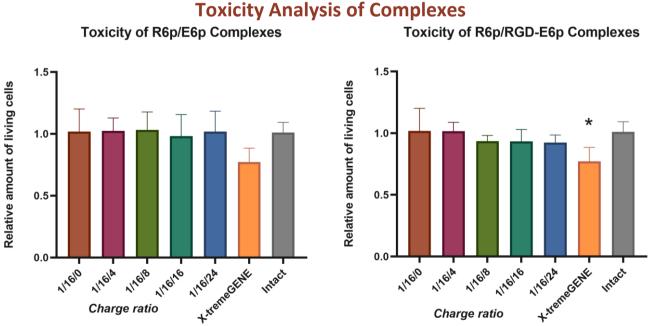

Resazurin Assay


Relative amount of living cells = $\frac{F - F_0}{F_c - F_0}$,

 F_c - dye fluorescence intensity in the absence of RNA/carrier complexes, F_0 - dye fluorescence intensity in the absence of cells.

RESULTS & DISCUSSION

Evaluation of the Effectiveness of SMN2 Gene Splicing Correction



The results are presented as a mean \pm SD n = 12 individual samples from the three independent experiments. * - p < 0.05, ** - p < 0.01,

*** - p < 0.0001 compared to intact cells.

The level of significance is determined using the Kruskal-Wallis test.

The results are presented as a mean \pm SD n = 6 individual samples from three independent experiments. * - p < 0.05 compared to intact cells. The level of significance is determined using the Kruskal-Wallis test.

Developed system demonstrates low toxicity and effectively facilitates transfection in cell culture, closely resembling physiological conditions.

REFERENCES

[1] Egorova A. et al. Characterization of iRGD-ligand modified arginine-histidine-rich peptides for nucleic acid therapeutics delivery to αvβ3 integrinexpressing cancer cells //Pharmaceuticals. – 2020. – V. 13. – №. 10. – P. 300.

[2] Singh N. N. et al. A short antisense oligonucleotide masking a unique intronic motif prevents skipping of a critical exon in spinal muscular atrophy //RNA biology. – 2009. – V. 6. – №. 3. – P. 341-350.

[3] Grigor'eva E.V. et al. Neural differentiation of patient-specific induced pluripotent stem cells from patients with a hereditary form of spinal muscular atrophy //Genes & Cells. – 2016. – V. 11. – №. 2. – P. 70-81.

[4] Zheleznyakova G. Y. et al. Genetic and expression studies of *SMN2* gene in Russian patients with spinal muscular atrophy type II and III //BMC medical genetics. – 2011. – V. 12. – P. 1-9.

[5] Maretina M. et al. Evaluation of Mean Percentage of Full-Length SMN Transcripts as a Molecular Biomarker of Spinal Muscular Atrophy //Genes. – 2022.
– V. 13. – №. 10. – P. 1911.