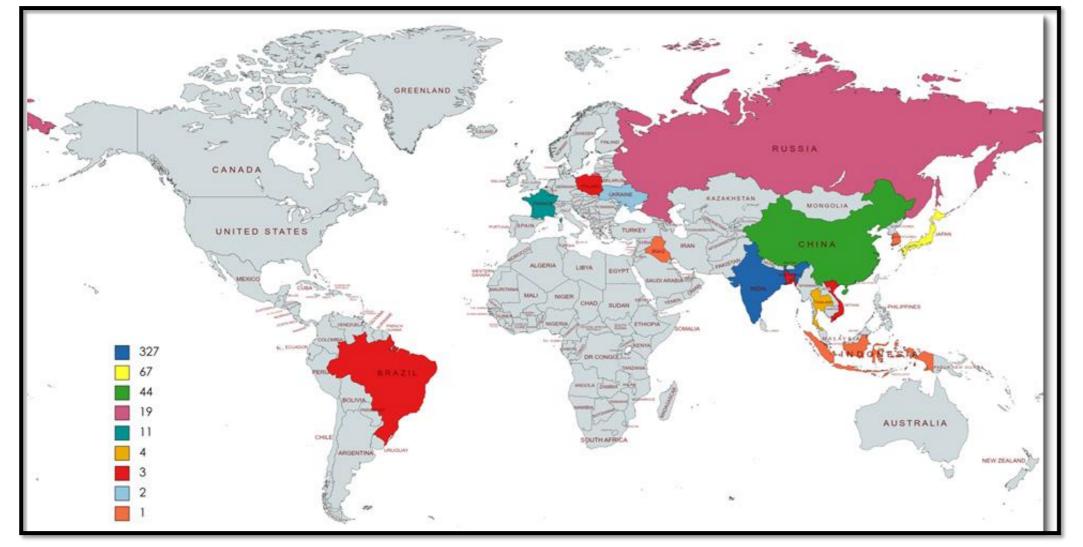
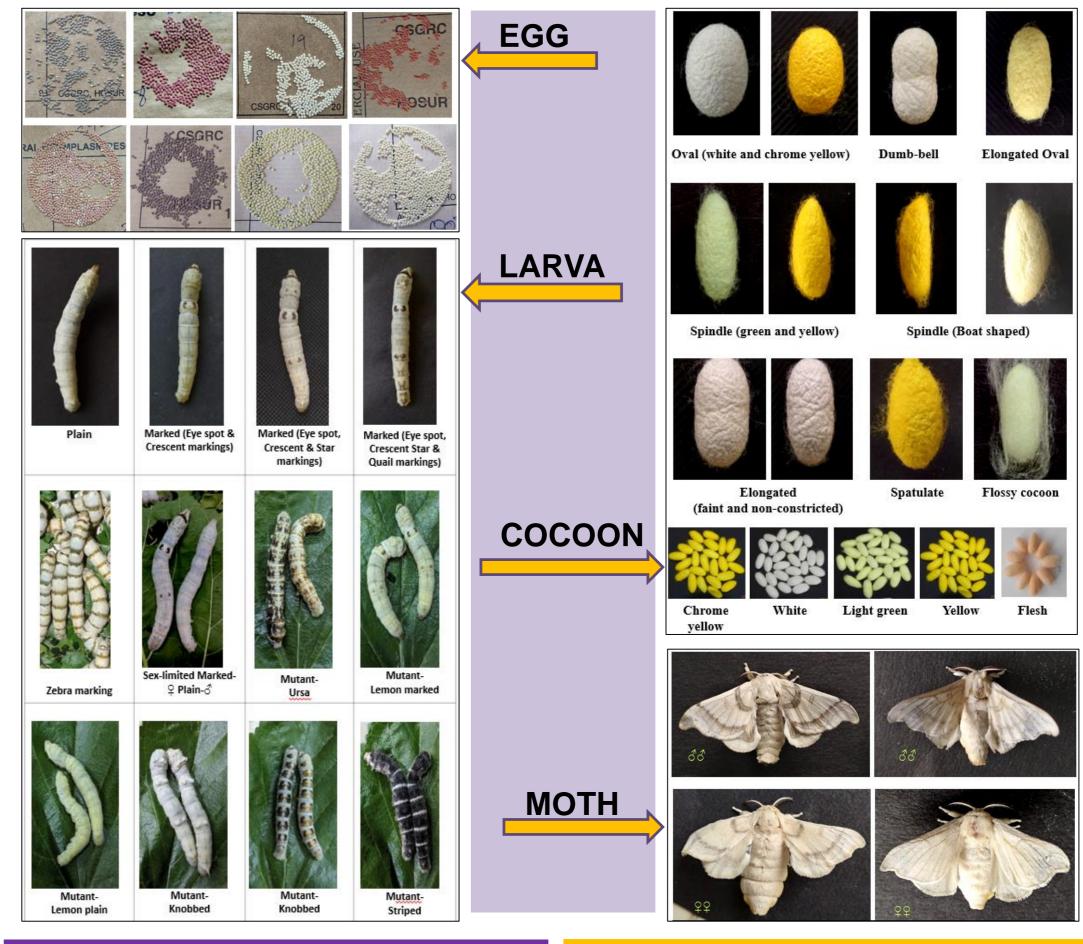


The 3rd International Electronic Conference on Diversity

15-17 October 2024 | Online


Germplasm characterization and conservation of the silkworm, **Bombyx mori L.** in a changing climate


Ritwika Sur Chaudhuri, Lokesh Gangadharaiah

Central Sericultural Germplasm Resources Centre, Central Silk Board, Hosur, Tamil Nadu, India-635 109

INTRODUCTION & AIM

- > Silkworm, Bombyx mori L., is a holometabolous Lepidopteran insect commercially cultured for the production of silk-the Queen of Textiles.
- > Central Sericultural Germplasm Resources Centre, Central Silk Board, is the National repository of mulberry silkworms and conserves 490 silkworm genetic resources.

- Silkworm, being a poikilothermic insect, is highly sensitive to fluctuations in environmental conditions.
- Characterization is a crucial step in germplasm conservation as it reveals important information on the traits of the genetic resources.
- > Under the increasing effects of climate change, germplasm characterization is gaining prominence as it is essential to identify the underutilized resources that are potentially resilient to changing environmental conditions.
- The paper aims to discuss characterization and evaluation of silkworm genetic resources at morphological and biochemical level to bring out the genetic variability in them.

METHOD

- > Morphological characterization: Based on the phenotypic traits, variations in important morphological descriptors were recorded through visual observations.
- Characterization through evaluation trials: Productive silkworm genotypes were reared in \succ varying environmental conditions in different agroclimatic zones of India and rearing performance was evaluated.
- **Biochemical characterization:**
- For thermotolerance: Selected productive silkworm genotypes were screened -
 - For presence of heat stable esterase through isozyme profiling
 - By using 4 SSR markers specific to thermotolerance, viz. LFL1123, LFL0329, 2. SO809,SO813.

Table: Details of SSR Loci, Primer Sequences and Allelic Size

SI. No	Primer	Locus	Sequence `5-`3	Tolerant Allele size	Susceptible Allele size
1	1123	LFL1123	FP-AAGTTCTTTACCAGTTCACAGACAGC	230bp	250bp
			RP-CGCCATGCAACTGTCGTCAC		
2	0329	LFL0329	FP-GAAATCCGTTTGAAGAATCCACA	200bp	180bp
			RP-CATCCGTTGAATGAGTATCGTTTG		
3	S0809		FP-AACATTTGCTTAGGACTGAATTTACAC	230bp	200 bp
			RP-AATAATAACTTTTACACGCACCTACACTT		
4	S0813	ISING 1 3	FP-CCAGGAAATTCCAACCAGTAGCC	500bp	480 bp
			RP-ACTTACCACTACACCAGACGGAC		

Characterization through evaluation

Environmental conditions	Suitable accessions	Thirteen genotypes	
Temperate Region	BBE-0222, BBE-0183	BMI-1,17,1 BME-49, B	
Sub tropical region	BBE-0197	,9,10,12,48 BBI- 286,324,35 showed presence of heat-stable esterase.	
Tropical region	BBE-0183, BBE-0187		
Temperate and tropical region	BBE-0183		
Southern zone	BBI-0348, BBE-0216, BBE-0329		
Sub tropical region	BBI-0348, BBE-0216, BBE-0329, BBE-0266		
Eastern zone	BBI-0348, BBE-0216, BBE-0266	Five genoty were identi	
High temperature & high RH (autumn)	BBE-0266, BBE-0178 BBE-0198, BBE-0266	through screening u thermotoler markers-	
High temperature and low RH (abiotic)	BMI-0045, BMI-0025, BMI-0027, BMI-0060		
High temperature and high RH (abiotic)	BMI-0040, BMI-0025, BMI-0027, BMI-0016	BBE-184, E 301, BBI-33 BBI-338 & 339	
High temperature and high RH (biotic)	BMI-0027		

Biochemical characterization

	358-Tolerant 1	359-Susceptible ඊ3ඊ 4♂ 5♀ 6♀ 7♀ 8♀ M				
— 18,43,	Primer	1123				
BBE-5						
8,	230bp	>200bp				
59						
	183-Susectible	184-Tolerant				
of	1ổ 2ổ 3ổ 4ổ 5♀ 6♀ 7♀ 8♀ м 1ổ 2ổ 3ổ 4ổ 5♀ 6♀ 7♀8♀ Primer 0329					
e						
		=				
		200bp				
	299-Susceptible	336-Tolerant				
types	1ở 2ở 3ở 4ở 5♀ 6♀ 7♀ 8♀ M	1 8 2 3 3 4 5 9 6 9 7 9 8				
ified						
using	>250bp	•				
using erant	>250bp	230bp				
Ŭ	343-Susceptible	86-Tolerant				
Ŭ	343- Susceptible 1් 2් 3් 4් 5⊋ 6⊋ 7⊋ 8⊋ M	86-Tolerant 1් 2් 3් 4් 5♀ 6♀ 7♀ 8♀ M				
BBI- 336,	343- Susceptible 1් 2් 3් 4් 5⊋ 6⊋ 7⊋ 8⊋ M	86-Tolerant				
erant BBI-	343- Susceptible 1් 2් 3් 4් 5⊋ 6⊋ 7⊋ 8⊋ M	86-Tolerant 1් 2් 3් 4් 5♀ 6♀ 7♀ 8♀ M				
BBI- 336,	343- Susceptible 1් 2් 3් 4් 5⊋ 6⊋ 7⊋ 8⊋ M	86-Tolerant 1් 2් 3් 4් 5♀ 6♀ 7♀ 8♀ M				

RESULTS & DISCUSSION

Morphological characterization: Number of variations were observed in each morphological descriptor of silkworm, Bombyx mori.

Descriptors	No. of variations	Descriptors	No. of variations
Egg shape	2	Cocoon shape	14
Egg colour	8	Cocoon grains	6
Serosa colour	13	Pupa colour	5
Colour of neonate	7	Moth colour	6
Larval Markings	3	Wing fasciations	6
Nature of integument	5	Moth eye colour	2
Body colour of V instar larva	20	Shape of antenna	1
Cocoon colour	14		

CONCLUSION

- > Conservation efforts of valuable silkworm resources can be justified only through characterization and identification of unique traits in the genotypes.
- > The data generated from characterization will be of immense use to give identity to the germplasm, to know its genetic potential, to group or classify the germplasm into different category and to establish the relationship of characterisation data with other quantitative parameters.
- > The trait-specific germplasm identified in this study will be useful to breeders in developing climate -resilient silkworm breeds, for continued silk production in a changing climate

FUTURE WORK / REFERENCES

- > Exchange of germplasm to broaden the genetic base and utilize in crop improvement programmes.
- > To establish the molecular identity of accessions through DNA markers and to discern genetic relationship among genotypes and to eliminate duplicates, for efficient conservation.
- > Exploring cryopreservation of genetic material as an alternative method of germplasm conservation. Efforts on cryopreservation of silkworm embryo have met with limited success.

The authors are thankful to Central Silk Board, Ministry of Textiles, Govt. of India, for funding the projects AIE-06002MI & AIE-06009MI.

IECD2024.sciforum.net