

The 1st International Online Conference on Photonics

14-16 October 2024 | Online

Fast method for the measurement of dispersion of integrated waveguides by utilizing Michelson interferometry effects

Isaac Yorke^{1,2*}, Lars Emil Gutt², Peter David Girouard³ and Michael Galili² ¹Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A I-43124

Parma, Italy

²Department of Electrical and Photonics Engineering, Technical University of Denmark, Ørsteds Plads **Bygning 3402800 Kongens Lyngby, Denmark**

³imec-NL, High Tech Campus 31, 5656 AE Eindhoven, Netherlands

INTRODUCTION & AIM

We demonstrate a method for measuring dispersion of a device under test (**DUT**), which utilizes light reflections at the edge and within an integrated waveguide to create a Michelson interferometer (**MI**). The fringes of the Michelson interferometer depend on

the group delay experienced in it.

10dB Coupler **10dB** FSC **Free Space Cavity**

TL

Polarization controller PC **Photo detector** PD

Tunable Laser

CIR Circulator PM **Power meter Device under test** DUT Oscilloscope OSC

For an optical cavity with a free spectral range of Δf , the group delay (τ) is inversely proportional to Δf [1]. By finding the local period in the reflected spectrum, τ can be found as a function of frequency and from this, the dispersion as the slope of τ.

CONCLUSION

Analyzing interferometric fringes from DUT light reflections offers a fast method for measuring Photonic Integrated Circuit dispersion, which aligns well with design values. This approach could serve as an alternative to established methods [3].

FUTURE WORK / REFERENCES

Future works will focus on validation with traditional methods

- 1. O. Schwelb, J. Light. Technol. 22, 1380 (2004). Journal of Lightwave Technology.
- 2. O. Belai, E. Podivilov, and D. Shapiro, Opt. communications 266, 512 (2006)
- B. Costa, IEEE Trans. on Microw. Theory Tech. 30, 1497 (1982) 3.

*Corresponding email: isaac.yorke@unipr.it

https://iocp2024.sciforum.net/