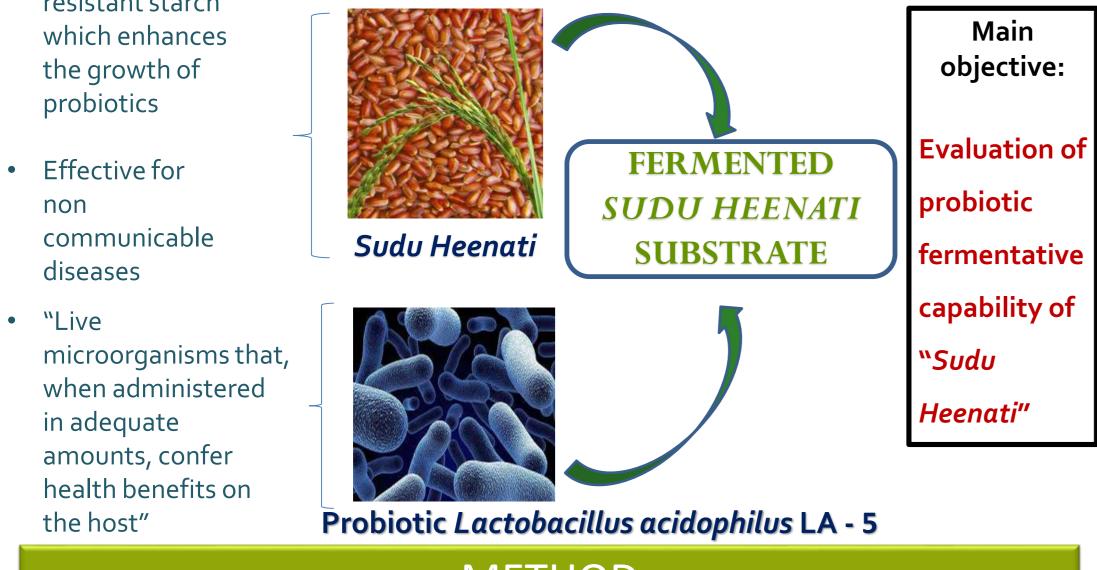
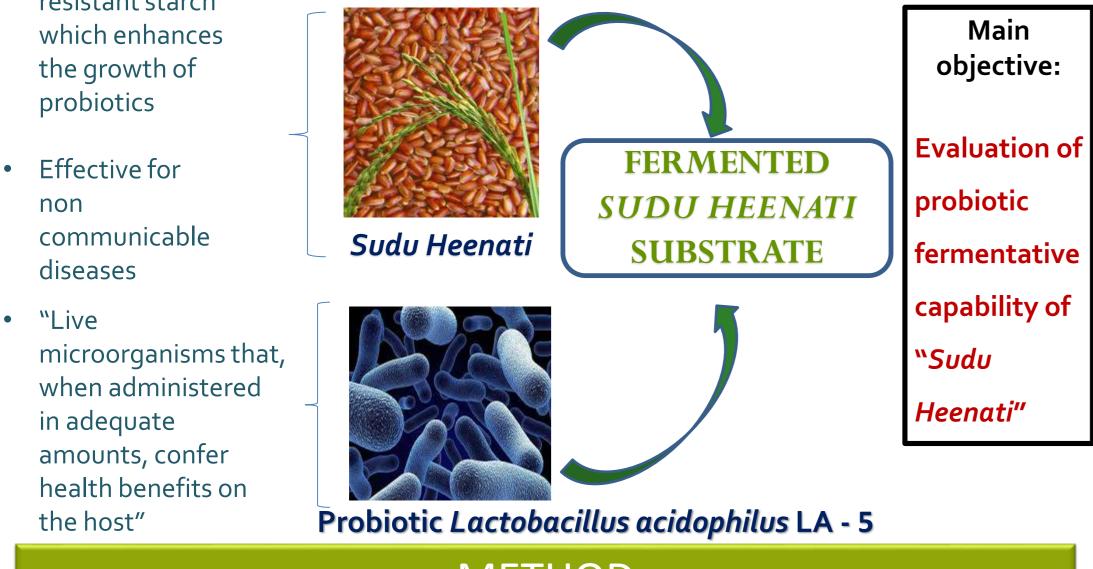
meanvalues betweenfermented&unfermented slurries significantly different at p<0.05

The 5th International Electronic **Conference on Foods**

28-30 October 2024 | Online

Evaluation of probiotic fermentative capability of Sri Lankan traditional rice variety, "Sudu Heenati": Compositional and physico-chemical characterization


Dilini Jayawardana^{1*}, Upeka Rajawardana¹, Theja Herath¹, Chandrika Nanayakkara², Savidya Liyanage¹ & Madara Samaranayake¹

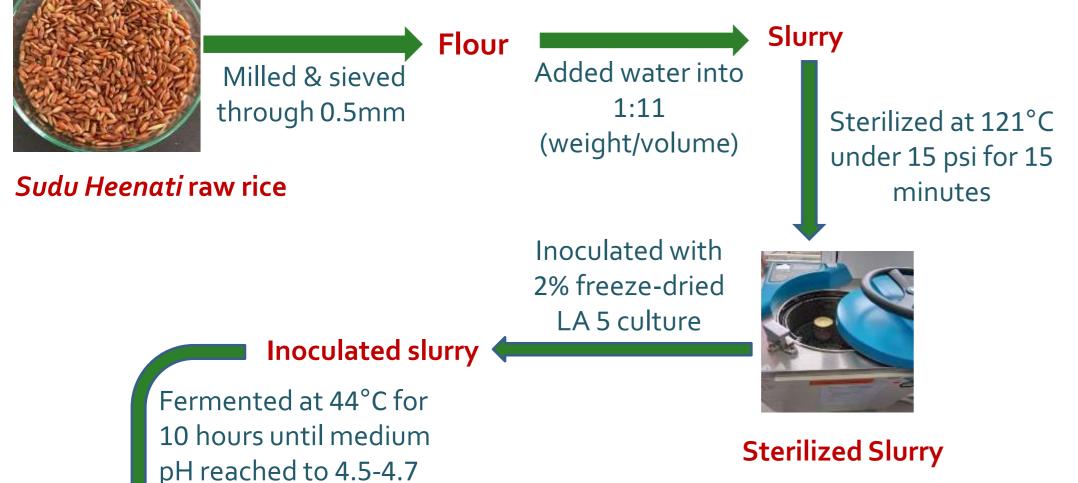

1 Food Technology Section, Modern Research and Development Complex (MRDC), Industrial Technology Institute (ITI), Malabe, Sri Lanka 2 Department of Plant Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka

INTRODUCTION & AIM

- ✓ The **concept of functional food** is an emerging trend among consumers
- ✓ Functional foods boost consumer's health and functionality
- ✓ **Rice** as a cereal is prominent in production of probiotic functional foods
- ✓ An Asian crop and staple food in Sri Lanka
- ✓ Varieties passed from generation to generation are known as "traditional" rice varieties
- ✓ The "Sudu Heenati" is a traditional rice variety with high nutrients

 Contains resistant starch

RESULTS & DISCUSSION


Table 01: Viable cell count and mean comparison of physico-chemical and compositional parameters between fermented and unfermented "Sudu Heenati "slurries

Parameter	Fermented slurry	Unfermented slurry	P value of paired t-test
Viable cell count (log ₁₀ cfu/g)	$\textbf{9.26} \pm \textbf{0.43}$	-	-
pH at 25°C	$\textbf{4.71} \pm \textbf{0.00}$	$\textbf{6.62} \pm \textbf{0.00}$	0.000*
Viscosity (cP)	1701.70 ± 3.12	818.26 ± 6.01	0.000*
Lactic acid content (%)	$\textbf{0.14} \pm \textbf{0.01}$	$\textbf{0.09} \pm \textbf{0.00}$	0.014*
% Carbohydrate (Dry basis)	88.19 ± 0.57	89.95 ± 1.42	0.275
% Protein (Dry basis)	5.68 ± 0.13	5.33 ± 0.26	0.104
% Fat (Dry basis)	$\textbf{2.72} \pm \textbf{0.07}$	$\textbf{2.82} \pm \textbf{0.24}$	0.406
% Ash (Dry basis)	2.45 ± 0.17	1.89 ± 0.04	0.019*

METHOD

Materials : "Sudu Heenati" raw rice and LA-5 freeze-dried probiotic L.acidophilus culture were purchased from a local farmer and the local supplier of CHR. Hansen Private Limited, Denmark, respectively.

Slurry preparation and fermentation:

The results are expressed as mean \pm Standard Deviation, n=3

*Indicates the mean values between fermented and unfermented slurries significantly different at p<0.05

Viable probiotic cell count

✓ During the fermentation, LA-5 has grown effectively achieving the final viable cell count 9.26 \pm 0.43 log₁₀ cfu/g, revealing the prebiotic potential and fermentative capability of "Sudu Heenati" rice variety (ISO29981:2010)

Physico-chemical Analysis

 \checkmark Titratable acidity, viscosity (EPS production) were significantly increased (p<0.05) and pH was significantly decreased (p<0.05) in fermented slurry compared to unfermented due to the production of organic acids which reduces the medium pH (Navyashree *et al.*, 2022 and Salazar *et al.*, 2016)

Compositional Analysis

- \checkmark Ash content (% weights in dry basis) was significantly increased (p<0.05) from
- **1.89** ± **0.04** to **2.45** ± **0.17** and protein, carbohydrate, fat were not significantly

Compositional Analysis

AOAC 922.06 (2012)

✓ Protein : ISO 8968-5:2001

✓Ash : AOAC 923.03 (2012) ✓ **Total carbohydrate content**: subtracting the sum of the values of protein, fat and ash content (% dry weight) of the sample from 100

Physico-chemical Analysis

√pH

✓ Fat :

Unfermented slurry

Evaluation of

fermentative capability

&

: At 25 °C by a digital pH meter (´Sli zewska and Chlebicz-Wójcik, 2020) ✓ Titratable acidity : AOAC 947.05 (2012) : Viscometer with spindle no. 5 at a shear ✓ Viscosity rate of 60 rpm (Goonathilaka *et al.*, 2023)

Total viable (LA 5) cell count ✓ International standard (ISO4833-1:2013) was followed

Statistical Analysis - SPSS version 20.

changed in fermented slurry

CONCLUSION

 \checkmark Fermented slurry has achieved viable cell count >8.0log₁₀cfu/g

 \checkmark Since, significant variations (p<0.05) were observed in physico-chemical properties and in ash content, the "Sudu Heenati" variety is a suitable substrate for the LA 5

incorporated probiotic functional foods with favorable technological properties

FUTURE WORK / REFERENCES

- ✓ Resistant starch contain will be studied in fermented and unfermented slurries
- ✓ Technological properties suitable for a product development

✓ Śliżewska, K. and Chlebicz-Wójcik, A., 2020. Growth kinetics of probiotic Lactobacillus strains in the alternative, cost-efficient semi-solid fermentation medium. Biology, 9(12), p.423.

https://sciforum.net/event/Foods2024