Foods Conference

The 5th International Electronic **Conference on Foods**

28-30 October 2024 | Online

EVALUATION OF ALTERNATIVE MODELS FOR RESPIRATION RATE OF READY-TO-EAT STRAWBERRY (cv. 'Ágata')

Irazoqui, M. (1) * (2); Barrios, S.(3); Lema, P. (3)

(1) DQL, Cenur LN, UdelaR; (2) LAA, ITRSO, UTEC; (3) IIQ, F. de Ingenieria, UdelaR. Uruguay

*mirazoqui@fing.edu.uy

INTRODUCTION & AIM

Modified atmosphere packaging (MAP) is an essential technology for maintaining quality attributes and extending fresh-cut products' shelf-life. When designing MAP conditions, it is necessary to determine the influence of internal gaseous atmosphere and temperature on fresh-cut metabolism, allowing to predict best conditions for shelf-life extension. While respiration rate models for various strawberry cultivars are well-documented, there is limited literature specifically addressing fresh-cut strawberries.

Evaluate and compare alternative models for the respiration rate (RR) of ready-to-eat strawberries as a O_2 , CO_2 , function of and temperature, with the goal of developing a robust mathematical model applicable in MAP.

01 – Strawberry process	02 – Respiration Experiences	03 – Model Evaluation	04 – Validation
 cv. Ágata (from north of Uruguay) Dehulled and sanitized (peracetic acid 80 ppm, 5 min) Dried 	 Factorial experiment: Temperature: five levels (4, 10, 14, 19, 26°C) Oxygen: three levels (5, 12, 21%) Carbon dioxide: three levels (0,7,14%) Four replicates 	 Phenomenological approch: Lagmuir and Michaelis-Menten with and without inhibition Non-phenomenological approach: exponential, linear and quadratic models. -Temperature effect: Arrhenius, exponential and power models. 	 Best model was used to predict RR of fresh-cut strawberries on closed systems at 12°C for 45h. Four replicates
Parameters associated with ripening stage: pH and Brix	Parameters: Respiration rate: based on O_2 consumption and CO_2 production measurements using closed system method	Model selection was performed based on R2-adjusted, RMSE and IAC indicators. Models with R2 > 0.80 and higher AIC and BIC were selected.	Parameters: - O2 and CO2 evolution was measure in closed system method

METHODS

RESULTS & DISCUSSION

A significant effect of pO_2 , pCO_2 and temperature, and their interactions were obtained on respiration rate (RRO_2) (p-value>0.05, Tukey test).

Table 1. Model parameters for: Langmuir; Michaelis-Menten uncompetitive-UMM, noncompetitive-NMM and mixed-MixMM; and goodness of fit for O2 consumption: effect of temperature, oxygen and carbon dioxide concentration.

	Para- meters	Langmuir	Para- meters	UMM	NMM	MixMM
Arrhenius model	А	1.77e11 (0.166)	А	1.77e11 (0.166)	1.51e11 (0.168)	1.74e11 (0.170)
	Ea (kJ/mol)	52.4 ± 1.7 (<2e-16)	Еа	52.4 ± 1.7 (<2e-16)	52.3 ± 1.8 (<2e-16)	52.39 ± 0.24 (<2e-16)
	a	0.0641 ± 0.0092 (8.57e-11)	k _{m,02}	15.6 ± 2.2 (8.57e-11)	12.5 ± 1.6 (1.11e-12)	15.2 ± 2.9 (4.46e-7)
	i	0.0460 ± 0.0080 (4.12e-8)	k _{j,CO2}	21.7 ± 3.8 (4.12e-8)		406 (0.855)
			k _{n,CO2}		44.0 ± 6.6	

All model tested could explain over the 87% of the experimental data variance. The best fit was achieved with the quadratic empirical model, which is simple and easy to construct; however, its parameters lack physical or biological meaning, limiting its applicability. Among the phenomenological models (enzyme-based), the UMM (or its Langmuir equivalent) provided the best fit.

https://sciforum.net/event/Foods2024