

Background

Synthetic biology: Introduce heterologous biological elements to biological systems for a desired outcome¹

- Detection of stimulus e.g., HIV²
- Compound production e.g., artemisinin³

Need heterologous elements orthogonal to the host \rightarrow avoid unwanted interactions¹ Grthogonal DNA binder: HinZip

Frankenprotein = Hin DBD + Leucine Zipper

HD-Zip

DNA Target Site Design

- Wild type Hin DNA targets: HixL and HixR • Each target has two half-sites
- HixC: inverted repeat of half site
- Half-site identical in HixL and HixR⁹
- InvHixC
- Inverted half sites in HixC
- Varied **spacer** between half sites \rightarrow accommodate structure, binding and dimerization of HinZip

Table 1. Hix sites DNA sequences

Site	Sequence
HixL	TTCTTGAAAACCA <u>AGGTTTTTGATAA</u>
HixR	TTTTCCTTTTGGA <u>AGGTTTTTGATAA</u>
HixC	TTATCAAAAACA TGTTTTTGATAA
invHixC	TGTTTTTGATAAX TTATCAAAAACA

A designed Franken protein that specifically targets a large DNA site

Raneem Akel and Jumi Shin

Department of Chemical and Physical Sciences, University of Toronto Mississauga Mississauga, Ontario, Canada

Protein Sequences: Hin DBD + FosW LZ

Leucine Zipper (LZ) Dimerization Element

DNA Binding Domain (DBD) • Helix-turn-helix motif • Recognize <u>7-8 bp</u> DNA

> • HD-Like domain Helix-turn-helix motif⁸ • From Salmonella • Recognizes <u>12 bp</u> DNA site

B. HinZip bound to invHixC

Bacterial-one-Hybrid Assays (B1H)

Semi-quantitative

- More growth to the right = stronger binding¹⁰
- Binding of constructs to various invHixC spacers
 Table 2
 Sequences of the DNA sites used

Target site	Sequence			
0 sp invHixC	TGTTTTTGATAATTATCAAAAACA			
2 sp invHixC	TGTTTTTGATAA <mark>GA</mark> TTATCAAAAACA			
5 sp invHixC	TGTTTTTGATAA GAGAG TTATCAAAAACA			
7 sp invHixC	TGTTTTTGATAA GAGAGAG TTATCAAAAACA			
9 sp invHixC	TGTTTTTGATAA GAGAGAGAG TTATCAAAAACA			
Half invHixC	ACCGTGCGTGGTTTATCAAAAACA			
Non-specific	GCTGCAGGAATGCCACGTGGCCCA			

Table 3. Summary of B1H data. The number of + indicates the strength of binding. – indicates no binding

-	÷	-	
Target site	HinZip	Hin	HinZip/LA
0 sp invHixC	++	+	++++
2 sp invHixC	+++	+	++
5 sp invHixC	++	+	++++
7 sp invHixC	++	+	+++
9 sp invHixC	+++	+	+++
Half invHixC	+	+	+++
Non-specific	-	-	-

Electrophoretic Mobility Shift Assay (EMSA)

- Quantitative binding assay
- Obtain binding constant and Hill coefficient (cooperativity)¹²
- Hin and HinZip/LA have monomers on gel. HinZip only Dimer \rightarrow LZ induces dimerization

HinZip vs full site
HinZip vs half-site
HinZip vs NS
Hin vs full site
Hin vs half-site
Hin vs NS
linZip/LA vs full site
nZip/LA vs half-site
HinZip/LA vs NS

Figure 3. Sample B1H data, 5 mM 3-AT plate. Full site is 2 sp invHixC. Half-site is half invHixC.

No binding to non-specific site \rightarrow Specific binding HinZip binds better than Hin \rightarrow LZ improves binding Spacer differentiation: only HinZip \rightarrow Dimerization plays a role

HinZip binding to half invHixC = Hin binding to half invHixC → HinZip cooperativity

HinZip/LA shows the most growth

• Alanine : helix stabilizer ¹¹

Figure 4. EMSA gels of *A*. HinZip binding to 0 sp invHixC *B*. HinZip/LA binding to 0 sp

Table 4. Summary of <i>K</i> _d data acqu				
0 sp invHixC	2 sp in			
18.7±3.4	23.2			
117.1±48.7	729.3±			
_	78.14			
	mmary of K _d da 0 sp invHixC 18.7±3.4 117.1±48.7 –			

Circular Dichroism (CD): Insights into secondary structure

• HinZip: Highest % Helicity • HZ 222:208 ~1=coiled-coil ¹³

Table 5. Summary of CD data

Protein	HinZip	Hin
% Helicity	28%	21%
222:208	1.02	-

Dynamic Light Scattering (DLS): Insights into size and oligomerization

 Table 6.
 Summary of DLS data

Protein

Oligomer Observed

- HinZip/LA no oligomers up to 2 μ M

- site (24-35 bp).
- efficiently and effectively
- Alanines stabilize the protein

References

. Biotechnol. J. **2012,** 7, 846-855.

- 2. Nat. Biotechnol. **2021,** 39, 1366-1374
- . ACS Chem. Biol. 2008, 3(1), 64-76.
- . Trends Plant Sci. 2007. 12(9). 419-426. 5. PNAS. 2006, 103(24), 8989-8994
- 6. Chembiochem. 2004, 5(2), 170–176.
- 7. Cell. 2008, 133(7), 1266.
- 8. Science. **1994,** 263(5145), 348–355.
- 9. JBC. 1992. 267(16), 11183-11190.
- 10. Nat. Biotechnol. **2005,** 23, 988–994.
- 11. J. Am. Chem. Soc. 2000, 122, 5638-5639
- 12. Nat. Protoc. 2007, 2(8), 1849-1861
- 13. Biopolymers. 1990, 30, 657-676.

