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Salt-Inducible Kinases 2 and 3 (SIK2 and SIK3) are key regulators of 

cellular metabolism and transcriptional regulation, implicated in various 

diseases such as cancer, inflammation, and metabolic disorders. Their 

pivotal roles make them attractive therapeutic targets, yet the 

development of selective and potent inhibitors for these kinases 

presents significant challenges due to their structural intricacies and 

biological functions.

In this study, we tackle these challenges by adopting a comprehensive 

computational approach, integrating multiple advanced methodologies, 

including de novo drug design, fragment-based drug design (FBDD), 

molecular docking, covalent docking, and molecular dynamics 

simulations. By leveraging these cutting-edge techniques, we aimed to 

streamline the identification and optimization of novel small molecule 

inhibitors with strong binding affinities, high specificity, and favorable 

pharmacokinetic properties. This approach not only accelerates the drug 

discovery process but also enhances the potential for developing 

effective therapeutics targeting SIK2 and SIK3, addressing diseases 

associated with dysregulated signaling pathways.

We selected the reference(CHEMBL5090394) , curated a large dataset by 

retrieving SMILEs from the PubChem and Zinc databases. These 

compounds were filtered using Lipinski's Rule of Five, the Ghose filter , 

and Tanimoto similarity which narrowed the dataset to 250 SMILEs. We 

compiled several files based on the fingerprints used. This study employed 

two chemical language models: "Molecular Design with Beam Search" and 

"REINVENT 4. In the initial phase, we utilized the models to generate 

SMILES using SBDD. This process involved single-Step and two-Step 

Fine-Tuning. In Phase 2, FBDD. The process involved Transfer learning 

and Sampling steps. The model was further refined with fragment files.

Figure 1: Chosen Lead                          Figure 2: Optimized Lead

the compound "O=C(c1ccc2ccoc2c1)N1CCC(C(=O)N2CCCC2)CC1“ 

(Figure 1) was chosen as a lead for molecular docking using MARK2-SIK2 

chimera (PDB ID: 8TXY) as the receptor then the lead underwent human 

optimization like adding an amino bridge between a six-membered ring 

and a carbonyl group, forming an amino carbonyl group (Figure 2). The 

resulting initial SMILE led to the generation of 30 distinct optimized 

molecules. Docking simulations validated the optimized molecules using 

AutoDock Vina. For covalent docking we used Meeko and AutoDock GPU. 

As aminoacid of interest we selected Methionine 104. Fragmenstein was 

used to generate novel molecules. For molecular dynamics we used 

GROMACS 2024.1 with the AMBER force field for the receptor and 

OpenFF tools for ligand parameterization and SPC216 water model for 10 

ns with a 2 fs time step.

Phase 1: Molecular Design with Beam Search was executed 42 times, 

generating 15 SMILES strings per run. This process yielded the best 

results with reasonable similarity and diversity. Model 2, REINVENT4, 

generated 628 SMILES strings without fine-tuning, followed by a two-step 

fine-tuning, which produced 154 SMILES strings. Phase 2: Fragment-

Based Drug Design (FBDD) involved running the Molecular Design with 

Beam Search 16 times, producing 15 SMILES per run, but with lower 

similarity to the reference molecule. REINVENT4 generated 12 files, with a 

median output of 157 SMILES per run. These SMILES had high similarity 

but lacked diversity. Using AutoDock Vina, the reference molecule had a 

minimum binding energy of -9.2 kcal/mol, while the lead compound had -

8.2 kcal/mol(Table 1). SMILE10 from the human optimization phase had 

the highest binding affinity, closely followed by other derivatives

Table 1: Ref and Lead Docking scores  Table 2: Ligand 10 v 1.3 variants          Figure 3: variant 48 structure

Fragmenstein SMILE 13 from Step 1 exhibited a binding energy of -10.7 

kcal/mol. Select molecules underwent MD simulations. Ligand 10 BSF 

Variant 1.3 showed consistent hydrogen bonding with MET 104 and GLU 

120, stable binding (RMSD ~0.225 nm), and fluctuating interaction energy 

around 4850 kJ/mol. Fragmenstein Ligand 2 Step 1 had dynamic 

hydrogen bonding with ARG 102 and ILE 119, larger conformational 

changes (RMSD ~0.45 nm), and similar interaction energy stability. A total 

of 78 variants of Ligand 10 V1.3 were generated across two trials. Docking 

grid box adjustments significantly impacted the results, with seven variants 

selected for further MD simulations. Variants 5 and 48 showed the best 

performance. Variant 48 achieved a binding energy of -10.79 kcal/mol, an 

improvement over the reference, though it didn't surpass the parent ligand 

in stability(Table 2)(Figure 3). Variant 5 demonstrated better hydrogen 

bond stability but fluctuated more (RMSD ~0.6 nm). Optimization extended 

to other covalent inhibitors, altering the bonding of the BSF warhead in 

Ligand 1 variants. Ligand 1 variant 1.4 new 2 achieved a binding energy of 

-10.17 kcal/mol. After MD simulations, Ligand 1 Variant 1.1 New showed 

intermittent hydrogen bonding with RMSD values between 0.22 nm and 

0.3 nm, Ligand 1 Variant 1.4 demonstrated stable hydrogen bonds with 

RMSD ~0.22 nm, and Ligand 1 Variant 1.4 New 2 exhibited stable 

hydrogen bonding with RMSD ~0.25 nm.

SMILE Mode Affinity 

(kcal/mol

)

Reference 1 -9.2

2 -9.2

Lead 1 -8.2

2 -7.9

Trial Variant Binding 

Energy 

(kcal/mol)

1 18 -10.42

1 5 -9.95

1 44 -10.39

1 48 -10.79
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The optimized lead compounds showed strong interactions with the 

protein targets, evidenced by higher binding affinities, stable binding 

profiles, and reliable hydrogen bonding. These results lay a solid 

foundation for further testing. The study highlights the potential for, 

bridging computational predictions with experimental applications. 
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