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1. Introduction
Fiber optic sensors have revolutionized tempe-
rature measurement with advantages like elec-
tromagnetic immunity, small size, and multiple-
xing. Among various sensor designs, Long Pe-
riod Fiber Gratings (LPFGs) stand out for their
simplicity, cost-effectiveness, and ability to mo-
nitor multiple parameters. LPFGs couple co-
re and cladding modes at specific wavelengths,
creating resonances sensitive to changes in tem-
perature or strain.
Traditional LPFG sensor analysis relies on shifts
in resonance wavelength or power, but these
methods can lack sensitivity and require com-
plex setups. Recent advancements in imaging
and deep learning offer new approaches for sen-
sor interrogation. By capturing the modal dis-
tribution in LPFGs and applying convolutional
neural networks (CNNs), it’s possible to accura-
tely predict temperature changes.
This study introduces a novel LPFG-based tem-
perature sensor using deep learning for precise
real-time monitoring. A CNN trained on near-
field images of the LP11 mode, which is highly
temperature-sensitive, achieves accurate predic-
tions. This method provides a fast and reliable
solution for applications in industrial, biomedi-
cal, and environmental monitoring.

Fig 1. Schematic of the experimental setup

2. Operating Principle
The design of LPFGs relies on periodic refrac-
tive index perturbations to enable energy trans-
fer between modes. The Coupled Mode Theory
(CMT) is used to model this interaction, des-
cribing how optical power transfers between the
LP01 and LP11 modes. The electric field ampli-
tudes for these modes are [1]:

E01(x, y, z) = a01(z)Ẽ01(x, y)e
−iβ01z

E11(x, y, z) = a11(z)Ẽ11(x, y)e
−iβ11z

Where β01 and β11 are the propagation cons-
tants. Energy transfer occurs when the phase
matching condition is met: β01 − β11 +

2π
Λ = 0.

This can be rewritten as:

Λ =
λres

neff,01 − neff,11
,

where λres is the resonance wavelength. Tem-
perature changes affect the refractive index, al-
tering the coupling coefficients and shifting the
resonance wavelength.

3. Experimental Setup
The LPFG was inscribed using a CO2 laser sys-
tem (Iradion, model 155), with a grating period
(Λ) of approximately 450 µm for LP01 and LP11

modes at 980 nm, inscribing fifty periods per
cycle via a PC interface. Fig. 1 shows the ex-
perimental setup for capturing modal images at
different temperatures. A 980 nm laser (FP-B-
980-150, Optilab) was paired with a linear pola-
rizer (PC1) to ensure 0° polarization. The light
traveled through a 0.2 m PANDA fiber and was
spliced to the LPFG in a single-mode optical
fiber (SMF-28, Corning). A 20x objective lens
collected the transmitted light, while an adjus-
table analyzer (PC2) assessed polarization ef-
fects. Modal intensity distributions were recor-
ded with a WiDy SWIR 640v camera. Tempera-
ture changes were induced using a ceramic hea-
ter in a controlled environment (24 °C, 65% hu-
midity), monitored by an Arduino-based system
to ensure thermal uniformity along the LPFG.

4. Model Training
The CNN model used is based on the MobileNet
architecture for image classification. Our data-
set consists of 16-bit grayscale images (640×512
pixels), which were converted to RGB by repli-
cating grayscale values and cropped to 224×224
pixels.
Data augmentation techniques, such as contrast
adjustment and Gaussian noise, increased data-
set diversity. The final dataset contained 1200
images, split into 70 % for training, 20 % for va-
lidation, and 10% for testing.
The MobileNet architecture was adapted from
classification to regression for temperature pre-
diction. We used transfer learning with pre-
trained weights from ImageNet, replacing the
classification layer with three fully connected
layers (1024 neurons, ReLU activations) and a
dropout layer (0.1 rate). The model, implemen-
ted in Python with Keras and TensorFlow, al-
so featured hyperparameter optimization using
the Optuna library and a learning rate scheduler
with exponential decay for efficient convergence.

Fig 2.Scatter plots of the optimization history
showing the variations in MSE across 100 trials
using different hyperparameter configurations.

5. Results and Discussion
Fig. 2 shows LP11 mode images captured at va-
rious temperatures, illustrating intensity distri-
bution changes due to temperature variations.
The MobileNet model’s performance for tem-
perature regression was assessed using Mean
Squared Error (MSE).Fig. 3 presents the opti-
mization history via Optuna, highlighting op-
timal hyperparameters: initial learning rate of
0.00228, decay rate of 0.8559, and decay steps
of 6480.

Fig 3. Intensity patterns of the LP11 mode captured
at different temperature conditions.

Fig. 4 compares actual (x-axis) and predicted
(y-axis) temperature values, with most points
near the line y = x, indicating accurate pre-
dictions and strong generalization. Training and
validation losses converge with minimal overfit-
ting.

Fig 4. Scatter plot of actual vs. predicted
temperatures, showing model accuracy.

- Prediction accuracy: 98.5% - Maximum error:
3.77 °C - RMSE: 0.94 °C (24 to 190 °C range) -
Inference time: 0.055 seconds for 32 images
These findings confirm the effectiveness of the
machine learning approach for precise and effi-
cient temperature predictions.

6. Conclusions
This study developed a temperature sensor
using Long Period Fiber Gratings (LPFG) and
deep learning. By training a MobileNet-based
CNN on LP11 mode images, we achieved a pre-
diction accuracy of 98.5% and an RMSE of
0.94°C.Results indicate strong predictive capa-
bilities, with data clustering along the diagonal
and low histogram dispersion. The model’s fast
inference time of 0.055 seconds for 32 images
makes it suitable for real-time applications. This
work demonstrates the effectiveness of integra-
ting LPFG sensors with machine learning for
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