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Abstract: The reliable prediction of future system behavior using sensor data is often hindered by 

inherent uncertainties, especially in cases where the data undergo gradual changes over time. These 

uncertainties typically arise from environmental factors or system degradation, posing significant 

challenges to accurate prognosis and decision-making. In this study, we propose a solution to ad-

dress this issue by employing confidence intervals to quantify uncertainty in prognosis based on 

progressively drifted sensor data. Our approach aims to establish a robust framework for evaluating 

the uncertainty associated with predictions derived from sensor data affected by gradual changes. 

To illustrate the importance of our proposed method, we mathematically model an exponentially 

growing sinusoidal pattern with additive noise and outliers, a pattern commonly observed in vibra-

tion signals from rotating machinery. Through various deep learning models, well-trained and op-

timized under hyperparameter optimizations and validation, our empirical validation and analysis 

demonstrate the effectiveness of our approach in enhancing the reliability and accuracy of prognosis 

models in dynamic sensor data environments. Thus, we draw important conclusions about the trust-

worthiness of predictions. This research contributes to advancing the understanding and applica-

tion of statistical techniques in managing uncertainty within sensor-based prognostic systems, 

thereby improving their effectiveness across diverse real-world applications. 
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uncertainty quantification; vibration signals 

 

1. Introduction 

Prognostics and Health Management (PHM) systems play a crucial role in ensuring 

the operational efficiency and longevity of mechanical systems [1]. Within this domain, 

predicting Remaining Useful Life or assessing Health Index is paramount for preemptive 

maintenance, cost reduction, and overall system reliability [2]. Central to these endeavors 

is the utilization of learning systems, which harness the power of data-driven methodol-

ogies to glean insights and make informed decisions [3]. Vibration analysis stands out as 

a cornerstone technique in PHM, offering invaluable insights into the health and perfor-

mance of mechanical systems [4]. By monitoring and interpreting vibration signals, ana-

lysts can detect anomalies, identify potential faults, and predict impending failures [5]. 

However, in real-world scenarios characterized by harsh environmental conditions and 

diverse system operating conditions, the complexity of the PHM process escalates signif-

icantly. The interplay between environmental factors, system dynamics, and degradation 

mechanisms poses formidable challenges, necessitating sophisticated approaches for un-

certainty quantification. 
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Uncertainty quantification emerges as a critical component in the realm of PHM, ad-

dressing the inherent unpredictability stemming from various sources such as measure-

ment errors, model approximations, and environmental variability. Despite its signifi-

cance, existing literature often lacks detailed explanations and clear methodologies, pre-

senting a barrier for beginners and impeding further advancements in the field [6]. 

In this paper, we aim to address this gap by providing a comprehensive framework 

for uncertainty quantification in sensor data-driven prognosis. Our contributions are 

threefold: 

1. Mathematical model utilization: We employ a mathematical model to interpret 

vibration signals, assuming the presence of a bearing with degraded behavior. Addition-

ally, we introduce a confidence interval-based z-score margin error to quantify uncer-

tainty, leveraging features derived from the confidence interval. 

2. Hyperparameters optimization: We propose a novel approach to hyperparameters 

optimization based on uncertainty quantification. By integrating uncertainty considera-

tions into the optimization process, we enhance the robustness and generalization capa-

bilities of the learning system. 

3. LSTM with uncertainty objective minimization: We explore the use of Long 

Short-Term Memory (LSTM) networks tuned based on uncertainty objective minimiza-

tion. A comparative analysis is conducted between LSTM models optimized for uncer-

tainty minimization and those optimized for Root Mean Square Error (RMSE) minimiza-

tion, shedding light on the efficacy of our proposed methodology [7]. 

The subsequent sections of this paper are structured as follows: Section 2 elaborates 

on the materials used, detailing the generation of synthetic data. Section 3 delineates the 

methodology employed for confidence interval construction and uncertainty quantifica-

tion. Section 4 is dedicated to presenting the results of our experiments and comparative 

analyses. Finally, Section 5 encapsulates our conclusions and outlines avenues for future 

research. 

2. Materials 

Simulating degradation data of vibration measurements which are assumed to be 

obtained from a deteriorating mechanical system passes via several key steps. Initially, a 

time vector 𝑇 is formulated comprising a predetermined number of points upon which 

the degradation data will be constructed. Sensor measurements 𝑋  are generated as a 

composite signal involving a sinusoidal oscillation with exponential decay, represented 

mathematically as in (1). Here, 𝐴 signifies the amplitude of the sinusoidal component, 𝑓 

represents the oscillation frequency, and 𝜆 denotes the decay rate governing the expo-

nential decay process. The term sin(2𝜋𝑓 𝑇) is the sinusoidal oscillations, while e−𝜆𝑇̅̅ ̅̅ ̅̅  en-

capsulates the decay aspect, yielding a signal that exhibits sinusoidal behavior with in-

creasing amplitude over time. Following the generation of the base signal, Gaussian noise 

𝜇 and outliers 𝜌 are introduced to mirror real-world measurement errors and environ-

mental disturbances. Lastly, a health index 𝑌 is generated to reflect the progressive deg-

radation of the mechanical system. It is depicted as a linearly decreasing function, signifies 

the system’s health status over time. Mathematically, the health index  𝑌 is expressed as 

in (2), where 𝑛 is the number of points in 𝑇. 

𝑋 =  𝐴 sin(2𝜋𝑓 𝑇) ⋅ e−𝜆𝑇̅̅ ̅̅ ̅̅  + 𝜇 + 𝜌  (1) 

𝑌𝑖 =  1 − 
𝑖

𝑛
, 𝑖 =  1, 2, … , 𝑛  (2) 

Sensor measurements and the associated decay landscape are depicted in Figure 1, 

offering a comprehensive visualization of the simulated degradation process and its tem-

poral evolution. Through this integrated approach, synthetic degradation data akin to vi-

bration measurements from deteriorating mechanical systems are effectively generated, 

facilitating investigations into prognostics and health management endeavors. 
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Figure 1. Generated vibration data: (a) run-to-fail life cycle vibration measurements; (b) linearly 

degraded health index. 

3. Methods 

This work adopts a confidence interval (CI) based on z-score to measure uncertainty 

in predictions [8], specifically as depicted in (3), where, �̅� is the sample mean, and 𝑧 rep-

resents the score associated with a given confidence level (i.e., 99% in this work results in 

𝑧 ≈ 2.5758). 𝜔 signifies the standard deviation 𝑋, and 𝑛 is the number of points in T as 

already mentioned. 

𝐶𝐼 =  �̅� ± 𝑧 ∙ 𝜔 (3) 

The objective function can incorporate various CI features, such as stability and cov-

erage probability. However, for illustrative purposes, this work primarily focuses on the 

interval width 𝐶𝐼𝑤 as in (4) as the main objective. The narrower the interval, the higher 

the level of certainty in the predictions is obtained. 

𝐶𝐼𝑤 =  2(𝑧 ∙ 𝜔) (4) 

4. Results 

An LSTM network is trained and its hyperparameters are optimized using Bayesian 

optimization with the objective of minimizing the confidence interval width 𝐶𝐼𝑤 [9]. This 

approach is then compared to a reference LSTM trained with the objective of minimizing 

RMSE. The data is not preprocessed; instead, it is simply divided into training and testing 

sets using the 20%-80% rule. We are aware that this method of data processing and split-

ting may not be optimal, but the goal of this small-scale study is to observe the differences 

between the two training methodologies and draw conclusions accordingly. 

In Figure 2, we present the results obtained by testing two neural network models on 

a holdout set comprising 20% of the dataset. This evaluation is conducted to assess the 

generalization performance of the models beyond the training data. The figure displays 

the prediction residuals along with the corresponding confidence intervals obtained for 

each model. 

Specifically, we compare the performance of two LSTM networks trained using dif-

ferent objectives: one under an uncertainty quantification objective (i.e., Interval width) 

and the other under an RMSE objective. 

The LSTM network trained under the uncertainty quantification objective demon-

strates tighter and more stable confidence intervals compared to the ordinary LSTM 

trained under the RMSE objective. This observation indicates that the uncertainty quanti-

fication objective leads to better uncertainty estimation in the predictions. Tighter 
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confidence intervals signify a higher level of confidence in the model’s predictions, while 

stability in the intervals suggests robustness against variations in the data. 

Additionally, it is noteworthy that the residuals observed in the LSTM network 

trained under the uncertainty quantification objective are closer to zero on average com-

pared to those in the ordinary LSTM trained under the RMSE objective. This closer prox-

imity to zero suggests that the uncertainty-aware LSTM model tends to produce predic-

tions that are more centered around the true values, indicating a higher level of accuracy 

and potentially better model calibration. 

Overall, Figure 2 highlights the effectiveness of optimizing neural network models 

for uncertainty quantification objectives, particularly in enhancing the reliability, stability, 

and accuracy of predictions, which are crucial for making informed decisions in various 

applications, including prognostics and health management. 

 

Figure 2. Obtained uncertainty quantification results. 

5. Conclusions 

In this study, we investigated the performance of LSTM neural network models 

trained under different objectives for predicting bearing degradation through vibration 

measurements. Specifically, we compared models trained under an uncertainty quantifi-

cation objective and an RMSE objective. Our results demonstrate that optimizing LSTM 

models for uncertainty quantification objectives leads to several advantages over tradi-

tional RMSE-based training approaches. Firstly, the LSTM network trained under the un-

certainty quantification objective exhibited tighter and more stable confidence intervals, 

indicating improved uncertainty estimation in the predictions. This enhanced uncertainty 

estimation is essential for providing reliable and informative predictions, especially in 

critical applications such as prognostics and health management. Furthermore, we ob-

served that the residuals of the LSTM network trained under the uncertainty quantifica-

tion objective were closer to zero on average compared to those of the RMSE-based LSTM 

model. This suggests that the uncertainty-aware LSTM model tends to produce predic-

tions that are more centered around the true values, indicating a higher level of accuracy 

and potentially better model calibration. Overall, our findings highlight the importance of 

considering uncertainty quantification objectives in the training of predictive models for 
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degradation prediction tasks. By incorporating uncertainty quantification into the model 

optimization process, we can enhance the reliability, stability, and accuracy of predictions, 

ultimately leading to more effective prognostics and health management strategies for 

mechanical systems. Future research could explore advanced uncertainty quantification 

techniques, like random weighting and one-sided confidence intervals for quantiles in 

discrete distributions, across various degradation data and models. Additionally, as-

sessing the impact of uncertainty-aware predictions on decision-making and maintenance 

strategies would offer valuable insights for prognostics and health management. 
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