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Abstract: Human gesture recognition using electromyography (EMG) signals holds high potential 

in enhancing the functionality of human-machine interfaces, prosthetic devices, and sports perfor-

mance analysis. This work proposes a gesture classification system based on electromyography. 

This system has been designed to improve the accuracy of forearm gesture classification by lever-

aging advanced signal processing and deep learning techniques to optimize classification accuracy. 

The system is composed of two main modules: a signal processing module able to perform two 

main transforms (Short-Time Fourier Transform and Constant-Q-Transform) and a classification 

module based on Convolutional Neural Networks (CNNs). The dataset employed in this study “La-

tent Factors Limiting the Performance of sEMG-Interfaces” comprises EMG signals collected via a 

bracelet equipped with 8 distinct sensors, capable of capturing a wide range of forearm muscle ac-

tivities. The experimental process is composed of two main phases. Firstly, we employed a k-fold 

cross-validation methodology to systematically assess and validate the model’s performance across 

different subsets of the data for hyperparameter tunning. Secondly, the best system configuration 

was evaluated over a new subset reporting significant improvements. The baseline neural network 

architecture reported an accuracy of 85.0 ± 0.13% in classifying gestures. Through rigorous hyperpa-

rameter tuning and the application of various mathematical transformations to the EMG features, 

we managed to enhance the classification accuracy to 90.0 ± 0.12% (an absolute improvement of 5% 

compared to the baseline for a 5-class problem). When comparing to previous works, we signifi-

cantly improved the F-score from 85.5%, to 89.3% for a 4-class problem (left, right, up, and down). 
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1. Introduction 

Electromyography (EMG) is a technique used to evaluate and record the electrical 

activity generated by muscles. This activity is translated into an electrical signal using 

several electrodes situated in different positions of the muscles. There is a high variability 

of EMG signals within the same subject and across different subjects, due to the charac-

teristics of the tissues and the recording electrodes, meaning that the area of signal decod-

ing still has room for improvement. [1] 

The classification of gestures based on EMG signals has attracted significant interest 

due to its potential applications in human-machine interfaces [2,3], rehabilitation [4], and 

sports performance analysis [5]. Surface electromyography (sEMG) is commonly used in 

exercise physiology, sports [6], and various applications where it is necessary to study 
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nerve activity. The electrical activity generated in the muscles can be used as good bi-

omarkers of nerve activity. Muscles’ activity can be used to control different devices such 

as games or exoskeletons, providing new possibilities of human computer interaction 

[7,8]. Accurately classifying gestures using EMG signals can greatly enhance the function-

ality of prosthetic devices, improve user experience in interactive systems, and offer val-

uable insights into muscle performance and fatigue [9,10]. 

Th application of deep learning for processing EMG signals has produced significant 

improvements in the development of classification and analysis systems focused on these 

signals [11]. Convolutional Neural Networks (CNNs) have proven to be effective in ex-

tracting relevant features from raw EMG data and classifying different types of muscle 

activities [12]. However, the variability in EMG signals across different users and the com-

plexity of accurately interpreting these signals are important challenges in the field. 

The main objective of this study is to develop a system for classifying forearm ges-

tures EMG data. This objective involves the design of the deep neural network, the fine-

tuning of hyperparameters, the assessment of various mathematical transformations for 

feature extraction and the analysis of the results to evaluate the best alternative. 

2. Materials and Methods 

In the next subsections, we will describe the main materials (datasets) and methods 

(different algorithms) used in this study. 

2.1. Dataset 

The dataset used in this study has been described in the article “Latent Factors Lim-

iting the Performance of sEMG-Interfaces” [13]. This dataset is described as “files of raw 

EMG data recorded by MYO Thalmic Bracelet” [14]. The dataset includes EMG recordings 

at a sampling rate of 1 kHz. 

For data acquisition, Lobov et al. developed a hardware-software system called My-

oCursor [15]. The system includes a MYO Thalmic bracelet [16] placed on the user’s fore-

arm. This device is connected by Bluetooth to a computer that receives and records 8 sig-

nals simultaneously. These 8 signals are generated from the 8 sensors included in the 

bracelet. 

The dataset includes recording from 36 different subjects who performed two series 

of several gestures (six or seven per sequence). The duration of a gesture is around three 

seconds, followed by a 3-s pause between consecutive gestures. The number of instances 

is about 40,000–50,000 samples per sensor, and it does not have any missing values. Ad-

ditionally, new recordings were collected while playing Pacman with the bracelet along 

different days in several weeks. 

The data was recorded at various time points, and the values for each channel were 

in scientific notation, reflecting the precise measurements of muscle activity. This dataset 

includes recordings of 8 different forearm movements (Unmarked data, Wrist flexion and 

extension, Hand at rest or in a fist, Radial and Ulnar deviations, Extended palm). The re-

cording time for each movement is shown in the Table 1: 

Table 1. Table of recordings of each gesture, without considering unmarked data. 

Movements Recording Time 

Hand at rest or in a fist 208,600 ms and 200,100 ms 

Wrist flexion and extension 206,600 ms and 209,200 ms 

Radial and Ulnar deviations 209,400 ms and 209,600 ms 

Extended palm 7100 ms 

Figure 1 show the main gestures considered in this dataset. 
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Figure 1. Hand movements: hand at rest (a), wrist extension (b) and flexion (c), radial (d) and ulnar 

(e) deviation, hand in a fist (f) and extended palm (g). 

2.2. Data Pre-Processing and Feature Extraction 

The data pre-processing module starts splitting the EMG signals into 200 ms win-

dows with an overlap of 100 ms (considering a sampling rate of 1 kHz). With the aim of 

finding out which mathematical transform obtained the best features for classification, 

four different transformations were defined: Short-Time Fourier Transform (STFT), with 

and without the cube root over the module of the transformation, and the Constant-Q-

Transform (CQT) including or not the cube root over the module of the transformation. 

The Short-Time Fourier Transform (STFT) was used on the overlapped windows. 

Then, the magnitude of the resulting transform is used to determine the energy at each 

frequency in each time window. 

The Constant-Q-Transform (CQT) is an alternative transform. This transform is a var-

iation of the Fourier transform but with higher resolution in low frequencies and a con-

stant difference between harmonics. This characteristic (constant difference between har-

monics) is very interesting when using Convolutional Neural Networks with linear ker-

nels. 

2.3. Classification Using Deep Learning 

A deep neural network was implemented to differentiate between several types of 

forearm movements (Figure 2). The architecture includes four convolutional layers, each 

one followed by a max-pooling layer, to learn features, and a second subnet including 

three fully connected layers for classifying the performed gesture. To prevent overfitting, 

Dropout layers were added between the layers. 

 

Figure 2. Neural network used, it should be noted that after each convolutional layer there is a 

dropout layer and after convolutional layer 2 and 3 there is a MaxPooling layer which we have not 

been able to illustrate. 

In this architecture, the SoftMax activation function was used in the final layer to deal 

with the classification task, while the ReLU activation function was used in the interme-

diate layer. The optimizer employed was RMSprop. The following hyperparameters were 
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optimized using a validation subset (see the next section): learning rate, batch size, num-

ber of epochs, dropout rate, number of filters and size of kernels in feature extraction lay-

ers, and the number of neurons in the classification layers. 

We managed to obtain these results after several experiments where we tested each 

neural network structure and each hyperparameter independently. 

2.4. Validation Techniques 

The experimental process consisted of two main phases. Firstly, we used the 15-Fold 

validation method with a subject-wise splitting strategy. This 15-Fold cross validation was 

chosen to ensure a robust evaluation of the classification system. Since we have 36 exper-

imental subjects, we randomly select 30 subjects for performing the 15-Fold, leaving 6 of 

those subjects for the final test (16.7%). The 15-Fold cross validation considering 15 folds 

(2 subject in every fold) was focused on finetuning the main aspect of the system: type of 

transform, and hyperparameters of the deep learning network. 

Secondly, in addition to the 15-Fold validation method, we did a final test evaluation 

with the 6 experimental subjects we separated at the beginning. Using an independent test 

subset is important to evaluate the generalization capability of the system. These 6 subjects 

weren’t used during the training or validation process (system development). The pur-

pose of using this test set is to get an independent measure of model performance on un-

seen data. This helps to get a realistic assessment of how the model will generalize with 

new data in practical real-world applications. This test set helps us to avoid overfitting 

and to learn not only the training set but also general patterns applicable to new subjects. 

This methodology ensures that the results obtained reflect the true performance of the 

model on unseen data. 

2.5. Quality Measures 

The quality measures we used during the experiments to ensure improvement were 

accuracy and f-score. 

The accuracy was calculated as seen in Equation (1), where True Positives (TP) are 

the positive samples correctly detected, False Positives (FP) are negative samples classified 

as positive, True Negatives (TN) are the negative samples correctly detected and False 

Negatives (FN) is the positive samples incorrectly detected as the negative ones. Equation 

(1). Accuracy formula. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 +  𝐹𝑃 + 𝑇𝑁
 (1) 

The F-score is the geometric mean of precision and recall, as seen in Equation (2). 

Where “Precision” is the TP divided by the detected positive samples (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
) 

and “Recall” is TP divided by the actual positive samples (𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
). Equation (2). 

F1-score formula. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ·
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (2) 

3. Results 

As commented previously, the experimentation was divided in two phases: system 

development using the 15-fold CV strategy and final testing of the best system configura-

tion with new data. Our 15-fold experiments confirmed that the best configuration is the 

one shown in Table 2, with four Convolution Layers and two Max-Pooling layers with one 

Dropout layer after each Convolution layer. 

Table 2. Best configuration of the Neural Network. 

Conv (1,7) Dropout Conv (1,5) MaxPooling Dropout Conv (1,3) MaxPooling Dropout Conv (1,2) 
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The best values for the hyperparameters of this neural network configuration are the 

following: a batch size of 50, 10 epochs, a dropout rate of 0.3, 32 filters in the convolutional 

layers and a learning rate of 0.0005. 

Making comparisons between the four different mathematical transformations for 

feature extraction, we concluded that the STFT transformation with cube root over the 

module of the transformation was the best features extraction strategy. 

The next table shows the confusion matrix obtained with the best system in the 15-

fold CV. 

Analysing the confusion matrix on Table 3, we manage to take the decision of joining 

two of the seven movements. “Wrist flexion” with “Hand clenched in a fist” and “Radial 

deviations” with “Wrist extension”. Additionally, we also notice that the “Guess 7” col-

umn is empty, this is because the movement “Extended Palm” was performed by very 

few users, which leads to the classification not being checked by much data, resulting in 

the values being assigned to the previous class, “Ulnar deviations”. 

Table 3. Confusion matrix of the last 15-Fold in percentages. 

   Prediction   
 Label 1 Label 2 Label 3 Label 4 Label 5 Label 6 Label 7 

Label 1: Hand at rest 99.9 0 0.1 0 0 0 0 

Label 2: Hand clenched in a fist 1 76 10.3 1.1 5.9 5.8 0 

Label 3: Wrist flexion 5.9 1.9 84 0 1.3 7 0 

Label 4: Wrist extension 0.1 1.6 0.1 59.1 29.4 9.9 0 

Label 5: Radial deviations 5.1 4.3 4.1 4.6 80 2.0 0 

Label 6: Ulnar deviations 1.3 5.2 25.3 3.3 2.2 62.8 0 

Label 7: Extended palm 0 0 0 0 0 100 0 

After joining the movement “Hand clenched into a fist” with “Wrist flexion” and 

“Radial deviations” with “Wrist extension”, we got a better confusion matrix as we can 

see in Table 4: 

Table 4. Confusion matrix of the last 15-Fold CV in percentages after joining the movement “Hand 

clenched into a fist” into “Wrist flexion” and “Radial deviations” into “Wrist extension”. 

  Prediction  
 Label 1 Label 2 Label 3 Label 4 Label 5 

Label 1: Hand at rest 99.8 0.1 0.1 0 0 

Label 2: Wrist flexion 1.4 87.5 3.4 7.7 0 

Label 3: Wrist extension 1.5 5.5 86.3 6.6 0 

Label 4: Ulnar deviations 0.4 27.6 5.6 66.2 0.1 

Label 5: Extended palm 0 0 0 100 0 

With this new selection of movements, the classification accuracy of the neural net-

work increased from 85.0% to 90.0 ± 0.12% in the 15-fold CV. 

Using the final testing set, we also reproduced the same experiment as the authors 

did in the reference study [13], using just the 4 principal movements, which are wrist ex-

tension (Up), wrist flexion (Down), radial deviation (Right) and ulnar deviation (Left). 

Compared to this previous work, we improved the F-score from 85.5% (in the previous 

work), to 89.3% for this 4-class classification problem (left, right, up and down). 

4. Discussion and Conclusions 

This work has proposed and evaluated a gesture recognition system based on deep 

learning for classifying forearm gestures using EMG signals. The pre-processing module 

divides the EMG signals into overlapping time windows of 200 ms with a 100 ms shift. 

For each window, the Short-Time Fourier Transform (STFT) with a cube root of its module 

is applied to extract relevant information in the frequency domain. The classification mod-

ule is based on a Convolutional Neural Network. The analysis of the confusion matrix 
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revealed that merging certain gesture classes significantly improves the classification per-

formance. Specifically, combining “Hand clenched into a fist” with “Wrist flexion” and 

“Radial deviations” with “Wrist extension” resulted in a more accurate confusion matrix. 

The developing phase led to an increase in classification accuracy from 85.0 ± 0.13%to 90.0 

± 0.12% using a 15-fold CV over 5 classes. When comparing to previous works with the 

testing subset, we improved the F-score from 85.5%, to 89.3% for a 4-class problem (left, 

right, up and down). The proposed preprocessing and classification modules developed 

in this study have the potential to significantly enhance the functionality of human-ma-

chine interfaces and prosthetic devices by providing more precise and reliable gesture 

recognition. 
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