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Figure 3. The spectral shift 

of the peak wavelength, 

with respect to the baseline 

condition, as a function of 

the concentration of tris and 

fructose.Figure  2. Spectral response of 

the optical fiber device for Tris 

(a) and fructose (b)
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Equation
y = A + B*x + C*x^2 + D*x^3

Reduced Chi-Sq 0.03302 0.00924 0.08202

Adj. R-Square 0.97087 0.98737 0.96

Value Standard Error

??  Tris

A 15.5 0

B 0.10472 0.06198
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D 1.69056E- 4.87319E-5
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Figure 4. Response of the 

spectral shift of the peak 

wavelength when applying 

temperature for tris and 

fructose.

(a)

(b)

Refractive index (RI) is a fundamental optical 

property that determines how light interacts 

with material. Some compounds exhibit similar 

RI when dissolved in water resulting difficult to 

differentiate them using traditional optical 

methods. To address this concern, the thermo-

optical response provides a promising approach 

for their identification. 

• Optical fiber sensors offer significant 

advantages, including high sensitivity, 

immunity to electromagnetic interference, ease 

of use, real-time operation and flexibility [1]. 

• The proposed method can be used for advanced 

applications in process monitoring and control 

in various scientific and technological 

disciplines where precise detection and 

quantification of compounds are crucial.

1. E. Udd, W.B. Spillman Jr., “Fiber Optic Sensors: An Introduction for 

Engineers and Scientists”. John Wiley & Sons: Hoboken, NJ,

2. L.B Soldano, E.C.M. Pennings, “Optical multi-mode interference

devices based on self-imaging: Principles and applications”. J.

Light. Technol. 1995, 13, 615–627.

• Use an optical fiber sensor based on multimode 

interference effect (MMI) to characterize RI of 

aqueous solutions.

• Present 2 different chemical compounds whose 

RI behavior is indistinguishable in aqueous 

solutions and successfully discriminate between 

them using its thermo-optic response.

The sensor device consists in a coreless 

multimode fiber segment (NC-MMF) spliced to 

two single-mode fiber segments (SMF). This 

structure is commonly called SMS. A transmission 

peak appears when light travels through the 

device, and it depends on the effective refractive 

index of the surrounding media and NC-MMF 

length [2].

Aqueous solutions of tris and fructose were 

prepared and their temperature-induced changes 

in RI were recorded at controlled temperature 

variations.

Total spectra shift of 7.95nm for Tris and 

8.25nm for fructose were measured.

The thermal response was evaluated at a 

concentration of 30% in 30ml using a hot plate, 

with the sensor submerged and covered (Figure 

1) and samples were made at temperature from 

25 °C to 45 °C, in increments of 2.5 °C (Figure 

4), presenting a positive spectral displacement 

and a nonlinear dependence on temperature.

The measured thermal sensitivity was 0.14433 

nm/°C for Tris and 0.1852 nm/°C for fructose.

Figure  1. Experimental setup

The SMS sensor has the potential as a superior alternative to traditional sensors due to its dual 

sensitivity to refractive index and temperature. Its unique ability to differentiate solutions with similar 

optical characteristics but different thermal responses make it valuable for real-world applications, 

including process control, food quality assurance, and biomedical analysis. The sensor’s versatile 

design opens doors to advancements in industrial and scientific sensor technology.
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