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Quadcopters play a vital role in modern applications such as surveillance, delivery, and

search-and-rescue missions, thanks to their agility, maneuverability, and vertical takeoff

and landing capabilities. However, maintaining stability and performance under dynamic

and unpredictable conditions, such as wind disturbances and sudden impulses, remains

a significant challenge. Achieving reliable operation in these scenarios requires robust

and advanced control strategies.

Proportional-Integral-Derivative (PID) controllers are commonly used for their simplicity

and effectiveness in stabilization tasks. When combined with a Linear Quadratic

Regulator (LQR), the resulting LQR-PID controller enhances performance by balancing

precise attitude stabilization with efficient control effort. However, optimizing the LQR's

Q and R matrices is critical for achieving the best performance and robustness, making

parameter tuning an essential part of the control design process.

This study explores the application of metaheuristic optimization techniques, specifically

Particle Swarm Optimization (PSO) and Grey Wolf Optimization (GWO), to tune LQR-

PID controllers for a quadcopter constrained to rotational degrees of freedom. The

primary goal is to enhance attitude stabilization, minimize control error, and ensure

robustness under disturbances such as wind and impulse forces. By comparing the

performance of PSO- and GWO-based controllers, this work provides insights into the

effectiveness of these optimization methods for quadcopter control applications and

contributes to the development of resilient control systems for aerial robotics.

Figure 1. Quadcopter Attitude Control Diagram

The PID-LQR controller combines a

PID control loop with a Linear

Quadratic Regulator (LQR) for precise

attitude stabilization of the quadcopter.

The PID loop addresses error

correction for roll, pitch, and yaw

angles, while the LQR uses optimized

Q and R matrices to compute the

feedback gain K, minimizing a cost

function of state error and control

effort. This setup, implemented in

Simulink, ensures optimal

performance and robust disturbance

rejection.

Figure 2. PSO Cost Function Minimization

Figure 3. GWO Cost Function Minimization

GWO begins by initializing a population of

wolves, where each wolf represents a

potential Q matrix for the LQR controller.

The fitness of each wolf is evaluated, and

the top three wolves—Alpha, Beta, and

Delta—serve as leaders, guiding the rest

of the population. The wolves update their

positions based on the leaders, with the

influence of the Alpha, Beta, and Delta

wolves gradually decreasing over time.

This iterative process continues until a

stopping criterion is met, at which point the

Alpha wolf’s position gives the optimal Q

matrix for the LQR controller.

In PSO, the optimization starts by initializing

a population of particles, each representing

a potential Q matrix for the LQR controller.

The fitness of each particle is evaluated

using the LQR cost function, and each

particle tracks its personal best position

(pBest) and the global best position (gBest).

The particles update their velocity and

position based on their own pBest and the

global gBest, balancing exploration and

exploitation. This iterative process continues

until a stopping condition is met, and the

global best position represents the optimal

Q matrix for the LQR controller.

Figure 4. Step Response of Yaw, Pitch, and Roll

Figure 4 illustrates the step

response of 10° for the Yaw, Pitch,

and Roll angles using controllers

optimized by PSO and GWO. The

PSO-based controller exhibits a

slight delay compared to the

GWO-based controller in the initial

transient response. However, it

achieves the steady-state faster

for all three angles. Notably, both

optimization methods effectively

track the desired step input without

introducing overshoot or steady-

state error, demonstrating their

reliability in maintaining system

stability and accuracy.

Figure 5. Trajectory Tracking Performance under Disturbances for Yaw, Pitch, and Roll

The voltage response of the front

motor highlights key differences:

the GWO-based controller

frequently saturates with sharp

voltage spikes, aiming for high

trajectory accuracy, while the

PSO-based controller shows

smoother voltage variations with

less pronounced saturation,

suggesting a balance between

control effort and energy efficiency.
Figure 6. Front Motor Voltage During Trajectory 

Tracking for GWO and PSO Controllers

This work compared PSO and GWO-based controllers for quadcopter attitude

stabilization under disturbances. GWO showed superior disturbance rejection with

minimal deviation but experienced more voltage saturation, while PSO exhibited

smoother control signals and faster stabilization after disturbances. These results

highlight the trade-offs between precision and response speed in UAV control

optimization.
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The figure shows trajectory tracking for the Yaw, Pitch, and Roll angles under

disturbances at 2, 12, and 22 seconds with increasing magnitude. These disturbances

mimic real-world challenges like wind gusts or signal noise. While both PSO and

GWO-based controllers maintain satisfactory performance, GWO excels in

disturbance rejection, limiting deviations to 1-2 degrees. PSO, however, recovers

faster after disturbances. This highlights a trade-off between disturbance rejection and

recovery speed, important for selecting the right controller for specific conditions.


