

The 5th International Electronic Conference on Applied Sciences

MDPI

04-06 December 2024 | Online

Novel Zn₂(V,Nb,Ta)N₃ Monolayers for Application in Tandem Solar Cells

Svetlana V. Ustiuzhanina¹, Maryia S. Baranava², Dzmitry Ch. Hvazdouski², Andrey A. Kistanov³

¹ Institute for Metals Superplasticity Problems, Russian Academy of Sciences, Ufa 450001, Russia
² Belarusian State University of Informatics and Radioelectronics, Minsk 220013, Belarus
³ Ufa University of Science and Technology, Ufa 450077, Russia

INTRODUCTION & AIM

The discovery of novel nanomaterials with outstanding functionality remains paramount for continuous technological advancements. Recently, significant attention has been paid to a family of zinc-based ternary nitrides. For instance, a comprehensive computational study demonstrated of hundreds of new (meta)stable ternary nitrides.¹

Zhuk et al. synthesized the Zn_2VN_3 thin film following computational simulations.² The Zn_2VN_3 thin film has a wide band gap of 2.35 eV, high charge carrier concentration of ~10¹⁷ cm⁻³, and Hall mobility of 80 cm²/(V·s), which make it a promising candidate for application in solar cells.

In this work, using first-principles simulations mechanical and optical properties and chemical activity towards nitrogen gas molecules of novel ternary nitride $Zn_2(V,Nb,Ta)N_3$ monolayers are studied.

METHOD

The calculations were performed in the frame work of functional theory (DFT). density The Perdew–Burke–Ernzerhof (PBE) functional³ under the generalized gradient approximation (GGA) was used for the optimization and mechanical geometry properties calculations. Optical properties were calculated using the hybrid exchange-correlation functional HSE06⁴. The planewave basis cutoff energy was set to 540 eV. Periodic boundary conditions were implemented in the in-plane transverse directions, while a vacuum space of 20 Å was

Figure 1. Absorption spectra $A(\omega)$ of the (a) Zn_2VN_3 , (b) Zn_2NbN_3 , and (c) Zn_2TaN_3 monolayers in xx (black line) and yy (red line) directions. Spatial dependencies of (d) Young's modulus (N/m), (e) shear modulus (N/m), and (f) Poisson's ratio for the $Zn_2(V,Nb,Ta)N_3$ monolayers.

In addition, the Zn_2VN_3 monolayer is the most stable in moisty environment and is less reactive towards atmospheric N-containing gas molecules It is also found that there is a the local surface dipole (Figure 2a,b) at the interface between the $Zn_2(V,Nb,Ta)N_3$ monolayers and the NO and NO₂ molecules, which affects their functionality.

Figure 2. Electron localization function for (a) NO and (b) NO_2 on the $Zn_2(V,Nb,Ta)N_3$ monolayers. D denotes dipole moment.

CONCLUSION

introduced to the out-of-plane direction. The van der Waals interaction upon NO and NO_2 gas molecules adsorption was treated using the DFT-D3 dispersion correction.

RESULTS & DISCUSSION

The predicted $Zn_2(V,Nb,Ta)N_3$ monolayers reflect light in the far-infrared and infrared regions from 0.1 to 1.65 eV and absorb light in the visible range. The maximum absorption value reaches 16.06%, 17.46% and 17.72% for the Zn_2VN_3 , Zn_2NbN_3 , and Zn_2TaN_3 monolayers (Figures 1a-c), respectively. Moreover, the Zn_2VN monolayer possesses the highest strength and elasticity (Figures 1d-f). The Zn_2VN_3 monolayer is the most promising for application in solar energy devices, for instance, as blocking layers in tandem solar cells. The Zn_2TaN_3 monolayers is found to be promising for application in molecular sensing.

Acknowledgement. The study was supported by the Russian Science Foundation grant No. 23-73-01001, <u>https://rscf.ru/en/project/23-73-01001/</u>.

REFERENCES

W. Sun, et al. Nat. Mater. 18, 732–739, 2019.
S. Zhuk, et al. Chem. Mater. 33(23), 9306-9316, 2021.
J. P. Perdew, et al. Phys. Rev. Lett. 77, 3865–3868, 1996.
J. Heyd, et al. J. Chem. Phys. 118, 8207, 2003.

https://sciforum.net/event/ASEC2024