

The 5th International Electronic Conference on Applied Sciences

04-06 December 2024 | Online

Structural Insights into Molybdenum Schiff Base Complexes: Impedance Spectroscopy and Coordination Behavior Josipa Sarjanović,¹ Marta Razum,² Luka Pavić,² Jana Pisk¹ PMF

¹University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a, 10000 Zagreb, Croatia ²Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia

INTRODUCTION

Molybdenum, a transition metal recognized for its diverse oxidation states and ability to form complex compounds, plays a significant role in various applications. Molybdenum Schiff base complexes, formed by coordinating molybdenum with ligands derived from primary amines and carbonyl compounds, exhibit remarkable catalytic and chemical properties.^[1,2]

In industry, molybdenum-based complexes are

RESULTS

Table 1. Conductivity after exposure of the dinuclear complex $[Mo_2O_4(L)(MeOH)_2] \cdot 2 H_2O$ to methanol, ethanol, propanol and water vapours.

Solvent Vapours	1 st cycling (Ω cm) ^{–1}	2 nd vapours (Ω cm) ⁻¹
MeOH	6.73 × 10 ⁻⁷	2.21 × 10 ⁻⁶
EtOH	5.60 × 10 ⁻⁷	8.85 × 10 ⁻⁸
PrOH	2.52 × 10 ⁻⁸	1.15 × 10 ⁻⁹

highly valued for their catalytic functions in key processes such as oxidation, hydrogenation, and olefin metathesis, all of which are essential to synthesis.^[2,3] Additionally, chemical these complexes are gaining prominence in materials science, where they contribute to the development of advanced materials with unique structures and electronic characteristics. These materials are crucial for energy conversion technologies and environmental protection efforts.^[2,4]

METHODOLOGY

The ligand was synthesized via the reaction of oxalyldihydrazide with salicylaldehyde, followed by coordination with $[MoO_2(acac)_2]$ in methanol, complex, resulting dinuclear in а $[Mo_2O_4(L)(MeOH)_2]$ ·2 H₂O. The obtained complex was subjected to various alcohol and water vapours, and its responses were analyzed using solid-state impedance spectroscopy (ss-IS) to evaluate its sensor properties. Additionally, the catalytic performance of the complex was investigated by employing it as a catalyst for the oxidation of benzyl alcohol, using *tert*-butyl hydroperoxide (TBHP) as the oxidant in an aqueous medium. This study seeks to explore the material's dual potential in sensing and catalytic applications.

time (min)

CONCLUSION

The dinuclear complex $[Mo_2O_4(L)(MeOH)_2]\cdot 2 H_2O$ demonstrated remarkable performance in both sensor and catalytic applications. It exhibited a pronounced response to all tested alcohol and water vapours, with the strongest response observed for MeOH vapours. Conductivity increased dramatically, from approximately 10^{-12} ($\Omega \cdot cm$)⁻¹ under ambient conditions to 10^{-6} ($\Omega \cdot cm$)⁻¹ when exposed to MeOH vapors, representing an enhancement of six orders of magnitude. Importantly, the complex reverted to its original structure, $[Mo_2O_4(L)(MeOH)_2] \cdot 2 H_2O$, after exposure, highlighting the sensor material's reversibility and stability. In catalytic testing, the complex achieved a benzyl alcohol conversion rate of approximately 30%, with a notable selectivity of around 70%. These findings underscore the potential of $[Mo_2O_4(L)(MeOH)_2]$ · 2 H₂O as a robust and selective catalyst.

REFERENCES

[1] V.K. Juyal; A. Pathak; M. Panwar; S.C. Thakuri; O. Prakash; A. Agrwal; V. Nand. J. Organomet. Chem. 999 (2023) 122825. [2] J. Sarjanović; E. Topić; M. Rubčić; L. Androš Dubraja; L. Pavić; J. Pisk. J. Mater. Chem. C 12 (2024) 4013-4025. [3] M. Xue; Z. Peng; K. Tao; J. Jia; D. Song; C.–H. Tung; W. Wang. Nat. Commun. 15 (2024) 797. [4] J. Sarjanović; M. Cader; E. Topić; M. Razum; D. Agustin; M. Rubčić; L. Pavić; J. Pisk. Mater. Adv. 5

https://sciforum.net/event/ASEC2024

(2024) 9391-9402.