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ABS T R AC T  

________________________________________________________ 

 The development of in vitro cytotoxicity assays has been driven by the 

need to rapidly evaluation of potential toxicity of large numbers of 

compounds, to reduce animal experimentation, and to save time and 

material resources. The large number of experimental results reported 

by different groups worldwide has lead to the accumulation of huge 

amounts of ontology-like data in large public databases as in ChEMBL. 

Conversely, many drugs have been assayed only for some selected 

tests. In this context, High-throughput multi-target Quantitative 

Structure-Activity (High-throughput mt-QSAR) techniques may 

become an important tool to rationalize drug discovery process. In this 

work, we train and validate by the first time mt-QSAR model using 

TOPS-MODE approach to calculate drug molecular descriptors and 

the software STATISTICA to seek a Linear Discriminant Analysis 

(LDA) function. This model correctly classifies 8,258 out of 9,000 

(Accuracy = 91.76%) multiplexing assay endpoints of 7903 drugs 

(including both train and validation series). Each endpoint correspond 

to one out of 1418 assays, 36 molecular and cellular targets, 46 

standard type measures, in two possible organisms (human and 

mouse). After that, we determined experimentally, by the first time, the 

values of EC50 = 21.58 μg/mL and Cytotoxicity = 23.6 % for the anti-

microbial / anti-parasite drug G1 over Balb/C mouse peritoneal 

macrophages using flow cytometry. In addition, the model predicts for 

G1 only 7 positive endpoints out 1,251 cytotoxicity assays (0.56% of 

probability of cytotoxicity in multiple assays). Both experimental and 

theoretical results point to a low macrophage cytotoxicity of G1. The 

results obtained are very important because they complement the 

toxicological studies of this important drug. This work opens a new 

door for the “in silico” multiplexing screening of large libraries of 

compounds. 

 

1. Introduction 

Macrophages are phagocytic cells that recognize and kill microbial and tumor targets by cell-to-cell contactor 

through secretion of a wide array of products including reactive oxygen species , reactive nitrogen 

intermediates, cytokines,  chemokines, etc.  (Tripathi and Sodhi 2009). Macrophages are the heterogeneous 
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grouping of cells that are derived from monocytes. They have a multitude of functions depending on their 

final differentiated state. These functions range from phagocytosis to antigen presentation to bone destruction, 

to name a few. Their importance in both the innate and acquired immune functions is undeniable. Xenobiotics 

that degrade their functional status can have grave consequences. Many published reports on the effect of 

xenobiotics on macrophage function make comparisons between treated versus untreated macrophages 

isolated in an identical manner to control for this problem. A commonly used source of mouse and rat 

macrophages is the peritoneal cavity. Two types of macrophages from the peritoneal cavity are used, resident 

and elicited (Barnett J. B. and  Brundage Kathleen M. 2010). Often in the cytotoxicity assay to increase the 

number of macrophages, a sterile irritant, such as thioglycollate, is injected several days prior to harvesting 

the cells. The resulting peritoneal cells are referred to as elicited macrophages.  

The process of cytotoxicity is the result of a sequence of stages and complex biological interactions that can 

be influenced by several factors, often contained in the same supernatant, have been identified that exhibit 

cytotoxic and/or growth inhibitory activities on a wide range of cells These factors include the interferons, 

lymphotoxins (LT) natural killer cytotoxic factor (NKCF) macrophage cytotoxins and tumor necrosis factor. 

The macrophages execute numerous functions such as antigen presentation, cytokine production, 

phagocytosis, migration, and the production of ROS (Cunnick Jess. 2006). The extent and duration of 

macrophage activation is critical to limit the detrimental effects associated with excessive inflammation. Many 

of the molecules generated during macrophage activation are toxic not only to microorganisms but also to the 

macrophages themselves. for this reason, mechanisms that account for macrophage deactivation play key roles 

in maintaining homeostasis and keeping the immune response under control (Valledor Annabel F. 2010). 

Numerous test development for toxicologist screening example the cytotoxicity test is a screening method that 

typically uses permanent cell lines for ranking acute toxicities of parent compounds based on the basal 

cytotoxicity theory chemicals exert their acute toxic effects by interfering with basic cellular functions that 

are common to all mammalian cells (Mingoia R.T. 2007)  In vitro drug cytotoxicity may be variable among 

different cell lines and. one parameter for cell death is the integrity of the cell membrane, which can be 

measured by the cytoplasmic enzyme activity released by damaged cells (Weyermann J. 2005).  

 The large number of experimental results reported by different groups worldwide has lead to the 

accumulation of huge amounts of information in this sense. This in turn, has allowed the creation of large 

databases available online for public research. One of the more outstanding cases with respect to drug 

cytotoxicity/biological effects over macrophage cells is the enormous database ChEMBL. ChEMBL is an 

Open Data database containing Binding (B), Functional (F), and Absorption, Distribution, Metabolism, and 

Excretion - Toxicity in Pharmacokinetics ADMET (A) information for a large number of drug-like bioactive 

compounds. These data are manually abstracted from the primary published literature on a regular basis, then 

further curated and standardized to maximize their quality and utility across a wide range of chemical biology 

and drug-discovery research problems. Currently, the database contains 5.4 million bioactivity measurements 

for more than 1 million compounds and 5200 protein targets. Access is available through a web-based 

interface, data downloads and web services at: https://www.ebi.ac.uk/chembldb (Gaulton et al. 2012). 

ChEMBL contains >10,000 outcomes for assays of drugs related somehow to macrophage with different 

degrees of curation (outputs obtained after using macrophage as keyword in a simple search). As a 

consequence, the search of computational models to predict the possible results for new drugs in all these 

assays have become a goal of the major importance to reduce experimentation costs. In addition, despite of 

the large number of assays described many drugs have been assayed only for some selected tests. 

Consequently, predictive models may become also an important tool to carry out an “in silico” mining of 

ChEMBL predicting new results for drugs already released. The mining of ChEMBL using different 

computational tools have been recognized by Mok et al. as a very interesting source of new knowledge (Mok 

and Brenk 2011). In special, Quantitative Structure-Activity Relationships (QSAR) have been widely used to 

predict toxicity from chemical structure and corresponding physicochemical properties (Kuzmin V.E. 2008). 

Unfortunately, almost current QSAR models are able to predict new outcomes only for one specific assay. In 

our opinion, we can circumvent this problem using High-throughput multi-target Quantitative Structure-

Activity (High-throughput mt-QSAR) techniques to model complex datasets determined in multiplexing assay 

conditions (mj) as is the case of ChEMBL (Riera-Fernandez et al. 2012, Prado-Prado et al. 2011). In particular, 

the method TOSS-MODE was introduced by Estrada et al. (Estrada et al. 2000b, Estrada and Peña 2000, 

Estrada, Gutierrez and González 2000a, Estrada 2000, Estrada and Uriarte 2001b) and implemented in the 

https://www.ebi.ac.uk/chembldb
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software MODESLAB (renamed as TOPS-MODE). TOPS-MODE have been demonstrated to be successful 

in both QSAR (Estrada et al. 2002b, Estrada, Quincoces and Patlewicz 2004, Estrada et al. 2006, Estrada et 

al. 2010, Pisco et al. 2006) and QSTR (Quantitative Structure-Toxicity Relationships) models as well (Estrada 

and Uriarte 2001a, Estrada, Molina and Uriarte 2001, Estrada et al. 2003, Estrada, Patlewicz and Gutierrez 

2004). More recently TOPS-MODE have applied to High-throughput mt-QSAR studies by our group 

(Marzaro et al. 2011) and also Molina & Speck-Planche et al. (Molina et al. 2012b). However, there are not 

High-throughput mt-QSAR models of multiplexing assay endpoints for drug effects over macrophages using 

TOPS-MODE or other technique. 

The main objective of the present work is to develop a valid High-throughput mt-QSAR model for predicting 

the biological effect of drugs over macrophages in a large set of mj assay conditions. Another important goal 

is to illustrate the use of the new method in a real-life example. Fort it, we are going to download and calculate 

TOPS-MODE selected descriptors for the large dataset reported in ChEMBL. Next, we shall fit and validate 

a new High-throughput mt-QSAR Linear Discriminant Analysis (LDA) model using the software 

STATISTICA. After that, we report, by the first time, the experimental study of the effect of the drug G1 over 

Balb/C mouse peritoneal macrophage population using flow cytometry. Last, we carry out the prediction of 

other multiplexing assay endpoints for G1, not experimentally determined in this work. The results obtained 

are very important because they complement the toxicological studies of this important anti-bacterial, anti-

fungal, and anti-parasite drug. In addition, they open a new door for the multiplexing “in silico” screening of 

large libraries of compounds.  

2. Materials and Methods 

2.1.  Computational methods 

2.1.1. ChEMBL dataset 

A general data set composed of >10,000 multiplexing assay endpoints was downloaded from the public 

database ChEMBL (Gaulton et al. 2012, Heikamp and Bajorath 2011). In any case, after a carefully curation 

of the dataset we retain 9000 multiplexing assay endpoints (statistical cases) after elimination of all cases with 

missing information or very low representation. This dataset includes Number drug (Nd) = 7,903 drugs and/or 

organic compounds previously assayed in different multiplexing assay conditions (mj). Every drug evaluated 

in different mj conditions were assigned to 1 out of 2 possible activity classes: active (C = 1) or non-active 

compounds (C = 0). One compound may lead to 1 or more statistical cases because it may give different 

outcomes (statistical cases) for alternative biological assays carried out in diverse sets of multiplex conditions. 

In this work, we defined mj according to the ontology mj => (au, cl, ot, te, sx). The different conditions that 

may change in the dataset are: different: organisms (ot), biological assays (au), molecular or cellular targets 

(te), or standard type of activity measure (sx). In closing, we analyzed N = 9000 statistical cases conformed by 

the above mentioned Nd = 7,903 drugs; which have been assayed each one in at least one out of assays Number 

(Na) = 1418 possible assays. For each one of these assays the dataset studied present for each drug at least one 

out of Number Standart Types (Ns) = 46 standard types of biological activity measures in turn carried out in 

at least one out of Number Target Nt = 36 molecular or cellular targets. These values have been reported in 

ChEMBL as results of experiments carried out on at least 1 out of 3 possible organisms. Number Organism 

(No) = 3 (Homo sapiens, and Mus musculus). The values are reported in ChEMBL with three different levels 

of Curation Number (Nc) = 3 (expert, intermediate, or auto-curation level). Please, see details on the 

assignation of cases to different classes in results and discussion section. 

2.1.2. Theoretical model 

In order to seek the High-throughput mt-QSAR model we used the LDA module of the software package 

STASTICA 6.0 (StatSoft.Inc. 2002). The model developed presented the general form.  
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Where, S(mj) = S(di, au, cl, ot, te, sx) is a real-valued variable that scores the propensity of the drug to be active 

in multiplex pharmacological assays of the drug depending on the conditions selected mj. The statistical 

parameters used to corroborate the model were: Number of cases (N), Canonical Regression coefficient (Rc), 

Chi-square statistic (χ2), and error level (p-level); which have to be < 0.05 (Van Waterbeemd 1995). In this 
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model, stdμ5i is the spectral moment or order k = 5 calculated with Modeslab. We used standard bond distance 

(std) as entries of the main diagonal of the bond adjacency matrix. The parameter p(au) is a probability, 

calculated a priori, with which any drug is expected to give a positive results in the uth assay au. The parameter 

p(cl) is a probability, calculated a priori, of confidence for a given data value into the ChEMBL dataset 

studied. The structural deviation terms Δμi
5(mj) = stdμi

5 - <
stdμi

5(mj)> represent the hypothesis H0. H0: the 

different deviations of the ith drug (di) with respect to the average of all positive drugs for different 

multiplexing assay conditions (mj) predict the final behavior of the compound. See a detailed discussion of 

terms and mj conditions in results and discussion section. This type of deviation-like High-throughput mt-

QSAR models has been used successful by other groups to solve different problems (Molina et al. 2012a, 

Speck-Planche et al. 2011). 

2.2. Biology assays 

2.2.1. Reagents and antibody 

1-5-Bromofur-2-il-2-bromo-2-nitroethene (G1); CAS number 35950-55-1, was kindly supplied from the 

Chemical Bioactives Centre, Sample purity was 99.93%.  G1 was dissolved in dimethylsulfoxide (DMSO), 

which was purchased in turn from Sigma–Aldrich Co. (DF, México). Macrophages were stained with  

phycoerythrin (PE), labelled monoclonal antibodies according to the manufacturers' instructions. Flow 

cytometry was performed using a FACalibur cytometer (Becton Dickinson, México). Thereafter, FACS data 

were analyzed with FlowJo 7.6.5 software. Both, anti-CD14 antibody (used to label CD14 receptor) and 7 –

aminoactinomycin (7-AAD) at 5 μg/mL viability solution were purchased from BD (BD Biosciences, 

México). 

2.2.2. Animals.  

Female Balb/C mice weighing 18–20 g were purchased from the UNAM-Harlan laboratories (DF, México). 

All animals (n=6) were allowed to acclimate to our laboratory facilities for at least 7 days before their inclusion 

in an experiment. They were housed in standard laboratory conditions (22 3 °C; relative humidity 50–55%; 

12h light/dark cycle) and given ad libitum access to food and water. This work agreed with Ethical Principles 

in Animal Research adopted by México (NOM 1999). 

 

2.2.3. Peritoneal macrophages isolation and cell culture. 

 

Peritoneal macrophages were obtained from mice euthanized by cervical dislocation. The peritoneal of the 

animals were surgically exposed using a midline incision. Peritoneal fluid was harvested by injecting 10 mL 

of ice-cold PBS into the peritoneal cavity followed by syringe aspiration. Cell suspensions were washed twice 

by centrifugation. Cell viability (over 95%) was determined using trypan blue exclusion. Macrophage numbers 

were adjusted to 1 × 106 cell/mL and plated 100 μL/ well in 96-well flat-bottomed tissue culture plates 

(UNIPARTS, Toluca, México). Cells were incubated in RPMI 1640 complete medium containing 10% FBS, 

and incubated for 24 h at 37 °C under 5% CO2 in a humidified chamber. Non-adherent cells were removed 

by gently washing with PBS and fresh RPMI 1640 complete medium was replaced. The efficiency of 

macrophage enrichment was monitored by 7AAD assay and routinely exceeded 90%. Cells were equilibrated 

for 24 h before commencing the experiment. 

2.2.4. Determination of cytotoxicity percentage by flow cytometry analysis 

In all cases, dimethyl sulfoxide (DMSO) was used as the diluting solvent, and dosage solutions were prepared 

immediately prior to testing. Incubations were carried out in triplicate; solvent controls were run with each 

experiment. The percentage of formation of cytotoxicity cells was determined by evaluating 7-Amino-

actinomycin D (7AAD) stained preparations of macrophages treated with the dosed chemical (G1) at 10, 8, 6, 

4 and 2 µg/mL in 24 h.  

   2) Maevent  tal7AAD*)/(To - *(Ma100=%tyCytotoxici   
 

Ma*= Positive Macrophages labeled CD14PE 

7AAD*= Positive 7AAD (Dead macrophages) 

Total event Ma = Total macrophages labeled and unlabeled CD14 with CD14 

 

Briefly, 1X 106 cells were washed twice with 1 mL ice-cold PBS. Cytotoxicity was determined using flow 

cytometry with a FACSCalibur cytometer (Becton Dickinson, USA) equipped with an argon-ion laser at 488 
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nm wavelength. Tubes 21 and 22, isotypic controls and tubes with antibodies alone were used to adjust PMT 

and fluorescence compensation. Fluorescence compensations were also occasionally adjusted with 

Compbeads (BD Biosciences) by determining the median of both positive and negative populations. Percent 

cytotoxicity was determined by the following formula (Tario J. D.. and K 2011), where Ma mean macrophages 

count, the symbol * indicates a positive answer to CD14Pe  and Negative mean negative to 7ADD staining 

for living cells.  

Last, was fitted a response curve vs. concentration (MFIi vs. ci) in order to calculate the EC50 values using 

the software MasterPlex 2010, 2.0.0.73 created for the MiariBio group (www.miraibio.com). The MasterPlex 

includes Readerfit to calculate the EC50 and adjust the curve. ReaderFit is a free online application for 

adjustment of the curve that allows two fitting curves and optionally interpolates unknown values of the curve. 

The ReaderFit contain several equations for the model: 4 parameters logistic (4PL), 5 parameters logistic 

(5PL), quadratic log-logit, log-log or linear and one out four optional weighting algorithms: 1/Y, 1/Y2, 1/X 

and 1/X2 to minimize the error. In our case, Y variable contains the different Mean Fluorescence Intensity 

(MFIi) response values and X the different concentrations (ci) for different samples. The parameters of 5PL 

model are: A, B, C, D, and E. A is the MFI value for the minimum asymptote. B is the Hill slope. C is the 

concentration at the inflection point. D is the MFI for the maximum asymptote. E is the asymmetry factor (E 

≠ 1 for a non-symmetric curve). MFI is the. MFI values are obtained after exposition of the biological sample 

to one volume of 100 μL of G1 at different ci values. This equation is represented through a sigmoid curve: 
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MFI = Mean Fluorescence Intensity. 

A= is the MFI/RLU value for the minimum asymptote 

B=is the hill slope 

C= EC50 is the concentration at the inflection point  

D is the MFI/RLU value for the maximum asymptote 

E is the asymmetry factor 

 

 

 

2.2.5. Statistical Analysis of experimental assays 

Data were analyzed using Statistica 6.0 software. Significant differences between treatments were 

determined by analysis of variance (ANOVA), followed by t test. Statistic significances were accepted when 

P < 0.05. The Tukey test with 95% confidence was applied to compare the means.  

3. Results and Discussion 

3.1. Multiplexing model of drug effect over macrophage 

3.1.1. Model training & validation 

It is well known that biological outcomes in multiplex cell viability assay for drugs effect over different 

cellular lineages depend not only on drug structure but also on the set of assay conditions selected (mj) 

(Gerets, Dhalluin and Atienzar 2011). In this work we developed a simple High-throughput mt-QSAR model 

http://www.miraibio.com/
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with only four variables able to assign each drug to 1 out of 2 possible activity classes: active (C = 1) or non-

active compounds (C = 0); given the molecular structure and several multiplex assay conditions mj. This 

model is expected to give different classification probabilities of the compound for different: organisms (ot), 

biological assays (au), molecular or cellular targets (te), or standard type of activity measure (sx). It is also 

desirable to use an algorithm that takes into consideration the different degrees of accuracy or level of 

curation (cl) in the experimental data. We fit the classifier using LDA. The best equation found was:  
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S(mj) = S(di, au, cl, ot, te, sx) is a real-valued variable that scores the propensity of the drug to be active in 

multiplex pharmacological assays of the drug depending on the conditions selected mj. The statistical 

parameters for the above equation are: Number of cases (N), Canonical Regression coefficient (Rc), Chi-

square statistic (χ2), and error level (p-level); which have to be < 0.05 (Van Waterbeemd 1995). The different 

parameters in the equation were introduced to codify specific information that is known to be determinant in 

the final value of biological activity. This discriminant function presented good results both in training and 

external validation series with overall Accuracy higher than 90%. According to previous reports in the QSAR 

literature (Patankar and Jurs 2003, Garcia-Garcia et al. 2004, Marrero-Ponce et al. 2005a, Marrero-Ponce et 

al. 2005b, Casanola-Martin et al. 2007, Casanola-Martin et al. 2008, Casanola-Martin et al. 2010) values 

Accuracy higher than 75% are acceptable. All the statistical data of this model are resumed in Table 1. 

Table 1 comes about here 

The reader should be aware that N here is not number of compounds but number of statistical cases. One 

compound may lead to 1 or more statistical cases because it may give different outcomes for alternative 

biological assays carried out in diverse sets of multiplex conditions defined by the ontology mj => (au, cl, ot, 

te, sx). This type of ontology introduced here allows us to clearly define the multiplex conditions for one assay 

in our dataset following the same line of thinking used for other ontology-like datasets in the literature 

(Martinez-Romero et al. 2010). The above equation was written in a compact form. At follow we expand the 

equation n order to better explain the meaning of the different parameters: 
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The first parameter *μi
5 = p(a)·p(c)·stdμi

5 codify the influence of the chemical structure of the compound over 

the biological activity. It is known that the spectral moment of order 5 codify information about all types of 

structural fragments with five or less bonds in the molecule. In addition to the topological information wμi5 

codify also information about the physicochemical properties of the atoms and bonds in the molecule. It 

depends on the type of atomic or bond weights wij used. In our equation we set wij equal to the values of 

standard bond distance (std) in order to incorporate geometrical information (Estrada et al. 2001, Estrada and 

Uriarte 2001a, Estrada et al. 2002a, Estrada and González-Díaz 2003, Estrada et al. 2003).   Consequently, 

*μi
5 codify the effect of the structure of the drug over the biological activity but depending on the type of assay 

carry out. In this sense, we pre-multiplied μi5 by the parameters p(au) and p(cl). The parameter p(a) is a 

probability (a priori) that codify the propensity of one assay to yield positive results. We defined p(au) = 

nl(au)/ntot(au); where n1(au) and ntot(au) are the number of positive or total results for the ith pharmacological 

assay ai in the ChEMBL dataset studied, respectively. The parameter p(cl) is a probability (a priori) of 

confidence for a given data value into the ChEMBL dataset studied. We defined p(c) as follow p(c) = 1, 0.75, 

or 0.5 for data values reported as being curated at expert, intermediate, or auto-curation level respectively. In 

Table 2 we give some example of assays and their p(au) values. In the Table SM1 of the online supplementary 

material file we list exhaustive values of these parameters.  

Table 2 comes about here 

  The other three terms in the equation express the structural dissimilarity between one specific compound 

and a group of active compounds that have been assayed in specific multiplex conditions defined by the sub-

ontology mj => (ot, te, sx). We quantify this effect in terms of the deviation Δμi
5(mj) = stdμi

5 - <
stdμi

5(mj)>. This 

deviation terms represent the hypothesis: H0 the structural dissimilarity between one compound with respect 

to the average of all compounds in a group predict the final behavior of the compound. For instance, Δμi
5(ot) 
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= stdμi
5 - <

stdμi
5(ot)> measure the deviation from the average value <μi

5(te)> of μi
5 for all active compounds (C 

= 1) assayed in the organism ot => t = 1, 2 for Human or Mouse, respectively. The three possible values for 

this parameter are <μi
5(o1)> = 18139.7, and <μi

5(o2)> = 18149.6. This type of model able to model/interpret 

cross-species activity is of the major  importance in order to reduce assays in humans (Meinel et al. 2011). By 

analogy, Δμi
5(te) = stdμi

5 - <
stdμi5(te)> is the dissimilarity between the structure of compound ith (expressed by 

stdμi5) with respect to all compounds active against the molecular or cellular target te. In Table 3 and Table 

4 we give the values of <μi
5(te)> and <μi

5(sx)> for the different targets or standard measure types respectively. 

Please insert both Table 3 and Table 4 near here 

3.1.2. Domain of application of the model 

A QSAR model is only valid within its calibration domain or domain of applicability (DA), and new objects 

must therefore be assessed as belonging to this domain before the model is applied (Oberg 2004). The valid 

DA can easily be defined with the LDA model, as outlined in previous works (Gonzalez-Diaz et al. 2007). In 

this data set, a total of only 355 out 9000 total objects (statistical cases) fall outside of the DA. This DA may 

be geometrically defined as the rectangular area inside the 5% confidence bound for the ± 2 residuals interval 

and the leverage limit of h = 3·p’/N = 3·(Nv + 1)/N = 3·(4 + 1)/6746 = 0.00223. Where, Nv is the number of 

variables in the model and N the number of cases used to train it. The DA can be visually illustrated in the so 

called Williams’ graph (see Figure 1) (Papa and Gramatica 2008). All of the remaining 8645 objects (96.1% 

of the data set) fall within the valid DA. We found similar error for both train and prediction sub-sets with 

6747 and 2253 objects (6747 + 2253 = 9000) respectively. Interestingly, 93.8% of drugs tested in some 

macrophage cytotoxicity assay lie within the DA as well. Similar behavior was found for other sub-sets of 

objects (see Table 5).  

Figure 1 comes about here 

In order to predict the classification of one compound one have to substitute in the High-throughput mt-

QSAR model in first instance the structural parameter of the compound μi
5. However, this not sufficient to 

obtain different outputs for the same compound assayed in diverse conditions. In addition, we have to 

substitute the parameters characteristics of the given assay conditions p(au), p(cl), <μi
5(ot)>, <μi

5(te)> , and 

<μi
5(sx)> .   

The models is expected to be more accurate for those mj based on the more representative as possible number 

of cases (Nj); taking into consideration the influence of Nj in multiplex assays (Atienzar et al. 2011). In Tables 

2, 3, and 4 we report values of these parameters. In total we analyzed Na = 1418 assays, Nt = 36 molecular or 

cellular targets, Ns = 46 standard types of biological activity measures. Considering that we have determined 

this values independently our High-throughput mt-QSAR model is able to predict a huge number of 

combinations of biological assay conditions mj. However, we strongly recommend using the model only for 

those mj with at least 10 known cases. The number Nj of mj that fulfill this stronger requisite are: Na = 437 

assays, Nt = 22 targets, Ns = 20. The max number of outputs with this constrain Smax = Na x Nt x Ns x No = 

437 x 22 x 20 x 2 = 384,560 multiplex conditions mj. Notably, No = 2 is the number of organisms susceptible 

to be studied with this model - Human (Homo sapiens) and Murine (Mus musmuculus). Consequently, our 

model is expected to be successful in the predictive extrapolation of experimental data from Murine species 

to Human. 

Table 5 comes about here 

3.2. Experimental-Theoretic Study of G1 anti-microbial drug 

3.2.1. Experimental results 

The compound G-1 is one of the members of a new family of furylethylene derivatives with both anti-

bacterial and anti-fungal properties (Blondeau et al. 1999). More recently anti-parasite activity has been also 

reported (Marrero-Ponce Y 2005). The compound was synthesized in the laboratories of the Chemical 

Bioactives Center (CBQ) at the Universidad Central de Las Villas (UCLV), Cuba. Nitrovinilfurans 

compounds are widely used in medicine, industry and agriculture Interest in the study of these compounds has 

increased in recent years due to the potent microcidal activity shown by compounds with this type of chemical 

structure Nitrofurans constitute an important group of chemicals with antimicrobial properties that are 

currently used in human and veterinary medicine (Perez Machado Giselle. 2004).  

3.2.2. Cytotoxicity assays 

The cytotoxicity is defined as the response of toxicity of a compound on the cell. The kinetic cell viability 

measurement provides the temporal information as to when a drug of interest induces its cytotoxic effect 
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(Colombo P 2001). Quantifying cell viability or cytotoxicity is crucial for understanding cancer biology, 

compound toxicity and cellular response to cytokines and other biological questions. The endpoint 

measurements and assays used in cytotoxicity tests very considerably. An important consideration when 

undertaking in vitro cytotoxicity tests concerns the length of exposure of the cells to the test material A 

distinction has been made between 'short-term' and 'long-term' tests: the short-term tests involve exposure to 

chemicals for periods from I min to about 4 hr (endpoint measurements are typically focused on cell viability 

and cell membrane damage), whereas in the long-term tests cells are exposed for 24 hr or more before 

measuring, for example, cell survival or cell proliferation (Skowron and Zapor 2004).The specific method 

used will greatly influence the interpretation of the data. While many viability methods have been used for 

decades, there have been recent developments which offer increased sensitivity, throughput, and specificity. 

The particular type of cell death, apoptotic or necrotic, is becoming increasingly important. This requires 

multiplexing of methods, or methods that are able to distinguish between the different cell states and different 

endpoint  evaluated (Cao LF 2010, Riss TL 2004).  

In our study we used only the detection of membrane integrity by staining with 7AAD and flow cytometry.  

Several parameters were analyzed for dramatic views on the cytotoxicity of the drug. Viability dye 7AAD is 

routinely used in four-color flow cytometry assays, and therefore its use in conjunction with fixation should 

be carefully evaluated (Jacques Nathalie 2008). The analyses with flow cytometry were performed; in order 

to follow the percentage of live macrophages present in the macrophages populations treated with G1 at 

different concentrations we observed changes in the viability of the macrophages after 24 hours. The assay 

shows a significant increase of dead cells, Cytotoxicity (%) = 23.6%, compared to the group untreated (2.85 

%) and the DMSO group (3.23%) at cmax = 10 µg/mL. The treatment of 6 and 8 µg/mL results in a dose-

dependent significant increase in cytotoxicity (16.5%) and (19.4%) respectively (Figure 2). The percent of 

cytotoxicity is similar in concentrations 2 and 4 µg/mL (approximately 10%). It is noted further that there is 

an increased cytotoxicity in a dose-dependent this phenomenon has been reported in several studies using 

other drugs (Savaşan S 2005). These resulted indicate slight toxicity of G1 (10 pg / mL) because the percentage 

of cytotoxicity calculated was 23.6% <50%. Furthermore the estimated EC50 for this product was 21.82. 

(OECD 2010). In other studies with the product in lymphocyte populations the concentration 15μg/mL was 

observed cytotoxicity (González Borroto JI 2005). 

Figure 2 comes here 

 Identification of ‘viable’ or ‘healthy’ cells by light-scatter (a common practice as perceived in a core 

laboratory) is purely empirical, and relies on the shape of the Forward Scatter vs. Side Scatter (FSC / SSC) 

cluster. Essentially, gating is set on the cloud-like distribution of cells with low to medium side-scatter, 

excluding cells with low forward scatter and high side-scatter. Sometimes this procedure provides a 

remarkable correlation between the percentage of excluded cells and the percentage of dead cells as identified 

by a viability stain such as 7-aminoactinomycin D (7-AAD) or propidium iodide (PI) (Petrunkina A.M. 2011). 

Secondly, we investigated the MFI on highly homogenous macrophages populations defined by the expression 

of CD14, obtained from the peritoneal macrophage of healthy mouse. These macrophages were exposed to 

different concentrations of G1 with DMSO. 

 

 In Figure 3, we depict a pseudo-color smooth projection of mean Intensity Fluorescence (MFI). This Figure 

represents plot FSC vs. SSC after exposure of G1 at 10µg/mL. In Figure 3A shows a 11.4% of the cell 

population of the total acquisition. The figure 3B has shown the cell population alone. The 3C and 3D shows 

the regions (R2 and R3) of macrophages labeled with CD14Pe (98.6%) of the total population. This figure 

shows the similarity of the dispersion values using foward (FSC) and side scatter (SSC). Cytotoxicity studies 

were used both forward scatter and side scatter because has shown high correlation (Veselá R 2011). This 

same methodology was used to represent the regions (R4, R5) stained with 7AAD this cell population 

represents 53.3% of total (3E; 3F).The SSC-H +, FSC-H + shows no significant differences at p <0.05 

compared to control. On the other hand no significant differences are observed in CD14Pe+7AAD+ at 

10µg/mL compared to control (CN) which shows that there is some cytotoxicity in macrophages thus 

corresponds to the results of cytotoxicity percentage calculated for this population. It is known from literature 

that the forward light scatter versus side scatter 90th is a measure of cell size and cell granularity respectively, 

the Latter Being dependent upon the presence of intracellular structures that change the refractive index of 

light (McGowan P 2012). The number of labeled cells with 7AAD indicates a slight cytotoxicity G1 but the 
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actual calculation of cytotoxicity was 23.6%.Statistical analysis also confirms that there are slight cytotoxicity 

since no significant differences between the treated and control. 

 

Figure 3 comes here 

In Table 6, we show the average values of Mean fluorescence intensity (MFI) in SSC and/or FSC scattering 

mode, for all samples (Negative Control, DMSO, and CD14Pe phenotypic marker macrophages exposed to 

G1).for all concentration of product G1. MFI and cell count (Event count) in FSC scattering mode give an 

idea of cellular size, while the same parameters but in SSC scattering mode measure internal cellular damage 

(Gorczyca W 2011). The events average in the dose 10 µg/mL was 1034. Moreover, the respective averages 

of MIF in quadrant 2 (Q2) for FSC and SSC are 550.83 ± 103 and 313.83 ± 94.4 (see Figure 3). In conclusion 

it was observed events classified by size and granularity  for this concentration.  

 

At a given a concentration, each experiment was carried out two times (repeated two times) using different 

animals (three animals) and the measure obtained for each animal was replicated three times (see materials 

and methods). Table 6 we show the averages of repetitions. We used the software STATISTICA for both 

means and ANOVA analysis (Hill and Lewicki 2006 ). In general, the results show not significant differences 

(p ≤ 0.05) between the mean values of MFI for G1-treated samples at different concentrations (2 - 10 µg/mL) 

with respects to the negative control (NC) and DMSO groups. In particular, there are not significant 

differences between the mean values of MFI for G1-treated samples labeled with anti-CD14Pe and stained 

with 7AAD (living macrophages) with respects to both control groups (see Table 6). The ANOVA analysis 

was carry out applying Tukey’s method. We confirm that there not significant differences for treated samples 

of living macrophages with respect to control groups. The numbers of cells are in a range between 500 and 

1500 events in general. The Figure 4 shows significant differences between groups. 

Table 6 and Figure 4 comes about here 

In addition, CD14 PE was used as a macrophages marker in the presence of 7AAD; as described in the 

Materials and methods section. In total, 52.7% of macrophages were marked with CD14Pe and 7AAD. The 

MFI average was 32.55 ± 9.3 and 130.35 ± 29.4 respectively. It means that more than 45% of macrophage 

were still alive after treatment with G1 at the higher concentration cmax = 10 µg/mL. In Figure 5, we show 

two parameters CD14Pe (FL2) and 7AAD (FL3) of the population of macrophages at this concentration. These 

additional results are consistent with the previous paragraph. 

Figure 5 comes here 

Finally, EC50 calculations using different methodologies have been shown below. The results show that the 

best dose-response curve was the Five parameter logistic (1/Y2) with an R2 = 0.956. The Root Mean Square 

Error (RMSE = 0) and EC50 = 21.82. This study calculated the EC50 being observed that these values differ 

with relation to the methodology applied (Tabla7). Fitting nonlinear models to observed data is often 

complicated by non-constant or heterogeneous variability. Heterogeneous variability or heteroscedasticity 

occurs in most types of observed data. This is especially true for biochemical assays where concentration or 

dose is the predictor. The best curve fit is reached when the curve is pulled as close as possible to each data 

point without breaking the actual curve model. The nonlinear least square algorithm accomplishes this task. 

The nonlinear (or linear) least square algorithm assumes that all points have the same variability, so all points 

influence the curve fit equally (Manivannan and Prasanna 2005). The nature of the data entails a variation of 

the dependent variable that changes over the data is known as heteroscedasticity. Many methods of regression 

analysis is based on the assumption of equal variances, but MasterPlex ReaderFit software used to calculate 

the EC50 offers 4 different weighting algorithms to account for heteroscedasticity. The five parameter logist 

is the optimal model equation and weighting algorithm with different parameters (Root Mean Square Error 

(RMSE), R-Square, and Standard Deviation of % Recovery). One way to counterbalance no constant 

variability is to make them constant again.  To accomplish this, weights are assigned to each standard sample 

data point.These weights are designed to approximate the way measurement errors are distributed.  By 

applying weighting, points on the lower part of the curve are given more influence on the curve again. One of 

algorithms of assigning weights: is 1/Y2 – Minimizes residuals (errors) based on relative Mean Fluorescence 

Intensity and Relative light Unit, (MFI/RLU) values. Many functions have been tried as curve models for 

immunoassays, but few of them possess all of these properties. The need for a curve model that accommodates 

asymmetry has been necessitated by improvements in instrument and laboratory technology. The development 
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of sandwich assays led to dose–response curves that tend to be more asymmetric than earlier types of assays. 

Additionally, because of improvements in signal-to-noise ratios, asymmetry is an issue even for assays whose 

dose–response relationships are not as highly asymmetric. The reason for this is that even modest levels of 

lack-of-fit error caused by fitting mildly asymmetric data to a symmetric model can dominate the pure error 

due to random variation in low-noise modern assays. For symmetric immunoassay and bioassay data, it can 

be argued that no curve model has been as successful as the four-parameter logistic function. Despite its utility, 

the 4PL function is generally not an adequate curve model for much of the asymmetric response data 

commonly observed in immunoassay and bioassay applications. The five-parameter logistic function, which 

includes a fifth parameter, permits asymmetry to be effectively modeled (Shin KJ 2006). The formula for 

analysis is: 
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 In conclusion two of the highest concentrations showed some cytotoxicity but I note that the EC50 is above 

the concentrations used in our study. In general, the cytotoxicity EC50 values for each compound were lower 

after 24h exposure. The best method used for the analysis was the 5PL using (1/Y2). The Figure 6 displays 

MasterPlex program used to calculate the EC50. It observes where the parameters that makes up the formula 

of equation 5PL. 

Figure 6 come here 

 

This study evaluated the cytotoxicity by calculating the percentage of cytotoxicity and EC50. by Equation 5 

PL. The best equation showed a R = 0.95. A comparison between the MFI of the groups treated with the 

negative control for parameters that reads the flow cytometer. The evaluated product showed slight 

cytotoxicity 

 

3.2.3. Prediction of G1 cytotoxicity for other assays  

In total we predicted 1,265 multiplexing assay endpoints for G1 biological activities. Notably the model 

predict very low probability (0.28) for G1 cytotoxicity (cutoff of TC50 < 100 μM) against human macrophages. 

The model also predicts only 7 positive endpoints for G1 out of 1,251 cytotoxicity assays (0.56% of probability 

of cytotoxicity in multiple assays), see Table 8. Interestingly, the predictive probability obtained for this 

compound in the cytotoxicity assay against WEHI cell line was 0.84. WEHI cell line is a biological model for 

leukemia and has been used to test anti-carcinogenic activity. (Lin CC 2011)  

Several predictions were conducted in J774 macrophages cell line (170 assays). In all cases the model 

predicts low probability of G1 to present cytotoxicity effect against J774 macrophages. Macrophages are 

highly motile cells capable of chemotaxis and pathogen engulfment (Costa Lima S 2012). J774 and Raw 264.7 

macrophage cell lines; which are well-established model systems in cell biology and immunology. The 

resistance of passive J774 cells to expansion of their surface areas is about one order of magnitude higher than 

that of human neutrophils (Lam J. 2009). The J774 has been used (Ganfon H 2012) to assess drugs anti-

parasitic activity against diverse parasite species such as Plasmodium parasites, Trypanosoma brucei brucei, 

and Leishmania mexicana mexicana. Other research reported this cell line to assess anti-leishmanial activity 

of compounds against both the promastigote and intracellular amastigote stages of Leishmania infantum and 

L. donovani (Wert L 2011). This is of a great importance if we know that the G1 have been demonstrated 

experimentally to be active against bacteria and parasites (Marrero-Ponce Y 2004).  

Table 8 comes about here 

Some of these positive results in predictive tests included the evaluation of the cytotoxicity in RAW264.7 

(Monocytic-macrophage leukemia cells) cell lines. The same Table 8 shows that the G1 could inhibit with 

89% of probability such cells in some specific assay conditions. However, the model predicts low probabilities 

of cytotoxicity in other assays using RAW264.7 cell. The RAW264.7 cell line was derived about 30 years ago 

from a tumor developing cells in a BAB/14 mouse, a BALB/c IgH congenic strain, inoculated with Abelson 

murine leukemia virus (MuLV), a defective transforming virus containing the v-abl tyrosine kinase oncogene, 

and replication-competent Moloney (Mo-MuLV) that served as helper virus (Raschke WC 1978) In addition, 

because of ease of cell propagation, high efficiency for DNA transfection, sensitivity to RNA interference, 
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possession of receptors for many relevant ligands, and other properties, RAW264.7 has been chosen by the 

Alliance for Cellular Signaling as the primary experimental system for their large-scale study of signaling 

pathways (Shin KJ 2006, Park HY 2012).  
 

Appendix A. Supplementary data 

Supplementary data to this article can be found online 
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TABLES TO BE INSERTED IN THE TEXT 

Table 1. Overall results of the classification model 

Statistics % Sub-set negative positive 

  Train   

Specificity 97.4 negative 3438 90 

Sensitivity 85.6 positive 464 2755 

Accuracy 91.8 total   

  CV   

Specificity 97.9 negative 1138 25 

Sensitivity 85.0 positive 163 927 

Accuracy 91.7 total   
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Table 2. Some examples p(a) values for different assays  

ID of au 
i p(au) n1 ntot Cutoff Relation Type Units Assay Description 

1002955 0.263 54 208 81814.3 > Ki nM Inhibition of MMP12 

964734 0.263 54 208 81814.3 < IC50 nM Inhibition of MMP12 

924957 0.263 54 208 81814.3 < log(1/Ki)   Inhibition of MMP12 

970762 0.743 74 100 21281.7 < IC50 nM Inhibition of TGH 

660813 0.711 68 96 2992.4 < IC50 nM 

Inhibitory activity 

against recombinant 

human Chemokine 

receptor type 3 

(CCR3) expressed in 

chinese hamster 

ovary cells 

1776768 0.821 77 94 55936.7 < ID50 nM 
Cytotoxicity against 

mouse J774 cells 

1261026 0.821 77 94 55936.7 < EC50 nM 
Cytotoxicity against 

mouse J774 cells 

940865 0.021 1 93 30.1 > Inhibition % 
Inhibition of CCR1 at 

10 uM 

1674458 0.430 39 92 73346.2 < TC50 uM 

Cytotoxicity against 

mouse RAW264.7 

cells after 24 hrs by 

MTT assay 

1175699 0.430 39 92 73346.2 < IC50 nM 

Cytotoxicity against 

mouse RAW264.7 

cells after 24 hrs by 

MTT assay 

1657211 0.430 39 92 73346.2 < IC50 
ug 

mL-1 

Cytotoxicity against 

mouse RAW264.7 

cells after 24 hrs by 

MTT assay 

860201 0.224 16 75 1961.4 > Ki nM Inhibition of CSF1R 

1025517 0.224 16 75 1961.4 < IC50 nM Inhibition of CSF1R 

1664436 0.413 30 74 12.7 > Inhibition % 

Inhibition of mouse 

recombinant iNOS at 

1 mM after 40 mins 

by colorimetric assay 

867926 0.840 62 74 229.4 < IC50 nM 

Inhibition of LPS-

induced TNFalpha 

production in human 

monocytes 

1285558 0.222 15 71 178344.1 > Ki nM 
Inhibition of mouse 

recombinant iNOS 

957262 0.222 15 71 178344.1 < IC50 nM 
Inhibition of mouse 

recombinant iNOS 

921708 0.130 8 68 2046.7 > 
Selectivity 

ratio 
  Inhibition of cFms 

998565 0.130 8 68 2046.7 < IC50 nM Inhibition of cFMS 
i ChEMBL ID for the assay au 
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Table 3. Values of <μi
5(te)> for all molecular or cellular targets studied 

te Target name <μi
5(te)> n1 ntotal 

1 RAW264.7 (Monocytic-macrophage leukemia cells) 20060.3 1630 3376 

2 C-C chemokine receptor type 3 23855.95 700 1185 

3 J774 (Macrophage cells) 16309.1 601 1001 

4 Cyclooxygenase-2 14102.64 558 1061 

5 C-C chemokine receptor type 1 20864.24 440 825 

6 Nitric oxide synthase, inducible 13168.54 420 1082 

7 J774.A1 (Macrophage cells) 22090.65 375 694 

8 MCSFreceptor  16919.75 343 752 

9 Matrix metalloproteinase 12 13775.03 280 566 

10 Acyl coenzyme A:cholesterol acyltransferase 12571.06 271 486 

11 Macrophage migration inhibitory factor 11088.6 257 461 

12 Macrophage-stimulating protein receptor 16863.76 74 159 

13 Monocytes 12711.64 68 84 

14 Dipeptidyl peptidase IV 16785.55 50 116 

15 EL4 (Thymoma cells) 24952.45 48 128 

16 Interleukin-8 15053.32 40 107 

17 Interleukin-5 21910.88 28 74 

18 C-C motif chemokine 5 32323.55 27 34 

19 Macrophage colony-stimulating factor 1 receptor 25464.67 21 29 

20 RAC-alpha serine/threonine-protein kinase 13962.93 12 38 

21 Serine/threonine-protein kinase TAO3 21791.05 12 26 

22 PMNL (Polymorphonuclear leukocytes) 18763.72 12 15 

23 Macrophages 42504.04 9 24 

24 Monocytes (Monocytic cells) 18649.45 7 15 

25 Scavenger receptor type A 48625.99 6 21 

26 eosinophils (Eosinophils) 15608.45 6 11 

27 WEHI (Macrophages) 13590.42 5 8 

28 Human macrophage cell line 16607.23 4 6 

29 EOL1 (Eosinophilic cells) 8907.19 2 6 

30 Granulocyte colony stimulating factor receptor 23935.49 1 2 

31 Macrophage scavenger receptor types I and II 11803.07 1 2 

32 Macrophage metalloelastase 16403.66 1 2 
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Table 4. Values of <μi
5(s)> for different standard type measures of biological activity 

sx Standard Type <μi
5(s)> n1 ntot sx Standard Type <μi

5(s)> n1 ntot 

1 IC50 960.45 3641 6070 23 Ratio EC50 494.89 8 23 

2 Inhibition 810.03 809 1997 24 TC50 1203.74 7 15 

3 Activity 892.48 721 1615 25 Ratio CC50/IC50 734.58 7 12 

4 Ki 748.39 355 1045 26 NO formation 318.8 6 19 

5 EC50 1123.73 176 218 27 TD50 619.19 6 11 

6 CC50 964.87 143 205 28 Ratio IC50 955.38 5 34 

7 Selectivity 761.4 83 240 29 Emax 1299.51 4 10 

8 ED50 1208.73 42 75 30 LD50 809.01 4 5 

9 ID50 727.11 39 67 31 Count 390.21 4 6 

10 Kd 1016.32 37 92 32 Initial rates 354.7 4 12 

11 Ratio 743.76 21 92 33 SI 811.54 4 12 

12 GI50 607.89 19 60 34 MNTD70 557.23 3 12 

13 Efficacy 994.28 16 33 35 Specific activity 1051.26 3 6 

14 Km 759.45 15 57 36 Selectivity index 772.11 3 6 

15 Selectivity ratio 869.72 12 41 37 kcat 501.13 2 11 

16 FC 3483.18 12 20 38 IC90 1421.46 2 3 

17 NOHA 271.55 12 37 39 RBA 1078.46 2 7 

18 MNTD90 524.19 10 12 40 Ratio Ki 970.76 2 3 

19 Fold change 558.31 10 35 41 Kb 1214.19 1 3 

20 Residual activity 1167.52 9 18 42 pIC50 809.49 1 1 

21 LC50 841.72 8 22 43 Kinact 423.27 1 2 

22 Survival 642.2 8 18 44 Cytotoxicity 366.49 1 3 

n1=number of active(C=1) cases for standart type ,n (Total)= Total cases for standart type 
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Table 5. Results of the study of Domain of Applicability (DA) for the model 

Endpoints 

Sub-seta 

DA 

count 

Total Sub-set 

count 

DA 

% 

Train 6481 6747 96.1 

CV 2164 2253 96.0 

Positive effect 4134 4309 95.9 

Negative effect 4511 4691 96.2 

Cytotoxicity 1174 1251 93.8 

Human 3405 3506 97.1 

Mouse 5234 5485 95.4 

IC50 4313 4494 96.0 

EC50 166 180 92.2 

All 8645 9000 96.1 
a Positive effect indicates that C = 1, this sub-set includes all 

cytotoxicity endpoints together with other biological effects.  
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Table 6. Effect on cytotoxicity for G1-treated samples at different concentrations vs. control groups 

Group 1 Macrophage Group 2 

Conc of G1 Cytometry  NC    DMSO   

μg/mL Parameter Mean1 Mean2 t p Mean1 Mean2 t p 

10 MFI 502.9 548.8 -0.57 0.59 502.9 480.1 0.35 0.73 

 MFI SSC 416.0 432.0 -0.11 0.92 416.0 426.0 -0.10 0.92 

 MFI SFC 669.2 665.5 0.09 0.93 669.2 604.8 1.44 0.18 

 Anti-CD14PE 38.6 21.2 2.06 0.08 38.6 29.9 1.94 0.08 

 7AAD 157.7 166.0 -0.18 0.86 157.7 174.8 -0.55 0.59 

 Anti-CD14PE + 7AAD 91.5 93.6 -0.07 0.95 91.5 108.1 -0.99 0.35 

8 MFI 516.9 548.8 -0.44 0.68 516.9 480.1 0.60 0.56 

 MFI SSC 409.0 432.0 -0.17 0.87 409.0 426.0 -0.18 0.86 

 MFI SFC 688.5 665.5 0.76 0.48 688.5 604.8 1.99 0.07 

 Anti-CD14PE 41.2 21.2 2.65 0.04 41.2 29.9 2.82 0.02 

 7AAD 153.2 166.0 -0.33 0.75 153.2 174.8 -0.78 0.45 

 Anti-CD14PE + 7AAD 89.5 93.6 -0.17 0.87 89.5 108.1 -1.31 0.22 

6 MFI 537.7 548.8 -0.14 0.89 537.7 480.1 0.89 0.39 

 MFI SSC 444.0 432.0 0.08 0.94 444.0 426.0 0.17 0.86 

 MFI SFC 705.3 665.5 0.84 0.43 705.3 604.8 2.16 0.06 

 Anti-CD14PE 38.9 21.2 2.27 0.06 38.9 29.9 2.16 0.06 

 7AAD 175.2 166.0 0.19 0.85 175.2 174.8 0.01 0.99 

 Anti-CD14PE + 7AAD 116.2 93.6 0.85 0.43 116.2 108.1 0.53 0.61 

4 MFI 498.8 548.8 -0.69 0.52 498.8 480.1 0.30 0.77 

 MFI SSC 474.2 432.0 0.30 0.78 474.2 426.0 0.49 0.63 

 MFI SFC 594.5 665.5 -0.56 0.60 594.5 604.8 -0.13 0.90 

 Anti-CD14PE 42.8 21.2 2.40 0.05 42.8 29.9 2.67 0.02 

 7AAD 214.5 166.0 0.89 0.41 214.5 174.8 1.14 0.28 

 Anti-CD14PE + 7AAD 138.7 93.6 1.25 0.26 138.7 108.1 1.50 0.17 

2 MFI 497.2 548.8 -0.69 0.52 497.2 480.1 0.27 0.79 

 MFI SSC 398.5 432.0 -0.25 0.81 398.5 426.0 -0.29 0.78 

 MFI SFC 668.2 665.5 0.08 0.94 668.2 604.8 1.48 0.17 

 Anti-CD14PE 40.7 21.2 2.41 0.05 40.7 29.9 2.50 0.03 

 7AAD 199.7 166.0 0.80 0.45 199.7 174.8 0.85 0.41 

 Anti-CD14PE + 7AAD 124.8 93.6 1.18 0.28 124.8 108.1 1.09 0.30 

Mean1=mean group 1; mean 2= mean group2 
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Table 7. Results of Dosis vs. Effect EC50 curve fitting by different algorithms 

Curve Fitting R2 RMSE a b c d e 

5PL (1/Y2) * 0.9588 0.0000 47.85819 -7.1792. 21.8259 130.5090 0.5185 

5PL (1/Y) 0.1833 5.8115 47.7578 -12.029 18.2210 -76.5320 0.3032 

4PL (1/Y) 0.9583 1.2316 -214.1114 -3.7650 25.8656 47.8645  

Log-Log 0.6222 2.3871 0.0948 1.1722    

Quadratic (1/Y) 0.9526 0.9381 -0.1505 0.9424 46.5202   

Linear (1/Y) 0.8154 1.4961 -0.8616 50.7310    
* Best fit model, 5PL is Five Parameters Logistic, 4PL is Five Parameters Logistic 
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Table 8. Theoretic-experimental determination of some endpoints for G1 cytotoxicity in multiplexing assays 

C p(1) Type Rel Cutoff  Units Assay Description b 

Endpoints for G1 cytotoxicity experimentally determined in this work 

0 0 EC50 < 21.58/10 μg 7ADD mouse peritoneal macrophages after 24h  

0 0 Cytotoxicity > 23.6 / 50 % 7ADD mouse peritoneal macrophages after 24 hrs at 10 μg/mL 

0 0 Cytotoxicity > 19.4 / 50 % 7ADD mouse peritoneal macrophages after 24 hrs at 8 μg/mL 

0 0 Cytotoxicity > 16.5 / 50 % 7ADD mouse peritoneal macrophages after 24 hrs at 6 μg/mL 

0 0 Cytotoxicity > 9.6 / 50 % 7ADD mouse peritoneal macrophages after 24 hrs at 4 μg/mL 

0 0 Cytotoxicity > 9.9 / 50 % 7ADD mouse peritoneal macrophages after 24 hrs at 2 μg/mL 

0 0 MFI < p < 0.05 % 7ADD mouse peritoneal macrophages after 24 hrs at 10 μg/mL 

0 0 MFI < p < 0.05 % 7ADD mouse peritoneal macrophages after 24 hrs at 8 μg/mL 

0 0 MFI < p < 0.05 % 7ADD mouse peritoneal macrophages after 24 hrs at 6 μg/mL 

0 0 MFI < p < 0.05 % 7ADD mouse peritoneal macrophages after 24 hrs at 4 μg/mL 

0 0 MFI < p < 0.05 % 7ADD mouse peritoneal macrophages after 24 hrs at 2 μg/mL 

Predicted multiplexing endpoints for G1 cytotoxicity 

0 0.28 TC50 < 100 μM Cytotoxicity against human macrophages 
1 0.84 ED50 < 11.4 μM CAM WEHI cell line by MTT assay 

1 0.63 IC50 < 33.4 μM Cytotoxicity against WEHI cell lines. 

1 0.72 EC50 < 164.7 uM CAM RAW264.7 cells (MMLC) assessed as cell survival after 

24 hrs by MTT assay  1 0.69 EC50 < 23.83 ug ml-1 CAM RAW264.7 cells (MMLC) by MTT colorimetric assay in 

presence of LPS  1 0.89 IC90 < 13.1 μM Cytotoxicity against rat RAW264.7 cells by MTT assay 

1 0.78 EC50 < 10.2 μM In vitro cytotoxicity against J774.2 cells after 72 h incubation. 

1 0.60 IC50 < 26.7 μM CAM J774 cells expressing RANKL signaling by Alamar blue 

assay 1 0.63 IC50 < 143.8 μM Cytotoxicity against J774.1 cell line after 48 hrs 

1 0.74 EC50 < 9.19 uM Cytotoxicity against macrophage cell line (J774) 

0 0.33 CC50 < 133.23 μM CAM RAW264.7 cells after 48 hrs by MTT assay 
0 0.37 CC50 < 28.87 uM CAM J774A1 cells assessed as cell viability after 72 hrs by 

MTT assay 0 0.37 CC50 < 50 ug.ml-1 Cytotoxicity against human J774A1 

0 0.40 CC50 < 79.03 ug.ml-1 CAM J774A1 cells after 48 hrs by Geimsa staining method 

0 0.44 CC50 < 76.79 ug ml-1 CAM J774A1 cells after 24 to 72 hrs by MTT assay 

0 0.44 CC50 < 57.64 ug ml-1 CAM J774A1 cells after 72 hrs by MTT assay 

0 0.45 CC50 < 42.49 ug ml-1 CAM J774A1 cells 

0 0.46 CC50 < 43.1 ug ml-1 CAM J774A1 cells by MTT assay 

0 0.39 IC50 < 90.93 uM  Cytotoxicity against LPS-stimulated mouse RAW264.7 cells 

after 24 hrs by MTT assay 0 0.40 IC50 < 68.76 ug ml-1 CAM J774A1 by MTT assay 

0 0.42 IC50 < 13.34 ug ml-1 CAM J774A1 cells by rapid colorimetric assay 

0 0.42 IC50 < 236.7 uM Cytotoxicity against LPS-stimulated mouse RAW264.7 cells 

assessed as cell viability after 24 hrs by MTT assay 0 0.42 IC50 < 30.94 uM Cytotoxicity in mouse RAW264.7 cells 

0 0.43 IC50 < 6.76 ug ml-1 In vitro cytotoxicity of compound against EL4. mouse 

thymoma was defined by microculture tetrazolium assay" 0 0.43 IC50 < 73.35 uM CAM RAW264.7 cells after 24 hrs by MTT assay 

0 0.43 IC50 < 231.62 uM CAM J774 cells after 24 hrs by by resazurin reduction test 

0 0.44 IC50 < 23.8 ug ml-1 CAM J774A1 cells after 72 hrs by cell-titer assay 

0 0.44 IC50 < 48.22 uM CAM RAW264.7 cells assessed as cell viability after 24 hrs by 

ultra gel clot assay 0 0.45 IC50 < 103.9 uM Cytotoxicity against LPS-stimulated mouse RAW264.7 cells 

by Griess method 0 0.45 IC50 < 10 uM CAM RAW264.7 cells assessed as cell viability after 24 hrs by 

MTT assay 0 0.45 IC50 < 6.3 ug ml-1 Cytotoxicity against human EL4 cells 

0 0.46 IC50 < 57 uM CAM RAW264.7 cells assessed as reduction in cell viability 

after 24 hrs by MTT assay 0 0.46 IC50 < 175 ug ml-1 CAM J774A1 cells after 24 hrs by trypan blue exclusion assay 

0 0.46 IC50 < 42.72 uM CAM RAW264.7 cells by MTT assay 

0 0.47 IC50 < 207.5 uM CAM macrophage RAW264.7 cells after 48 hrs by MTT assay 

0 0.49 IC50 < 12.17 ug ml-1 CAM RAW264.7 cells after 2 days by MTT assay 

0 0.50 IC50 < 27.5 uM CAM RAW264.7 cells after 72 hrs by resazurin assay 
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0 0.25 Inhibition > 17.3 % CAM J774A1 cells assessed as reduction in metabolic activity 

at 100 uM after 24 hrs by MTT assay 0 0.37 LC50 < 12.28 ug ml-1 CAM RAW264.7 cells 

0 0.09 MNTD70 < 88.51 uM CAM RAW264.7 cells assessed as maximum non-toxic dose 

after 48 hrs by MTT assay 0 0.12 Survival > 68.14 % CAM RAW264.7 cells assessed as cell survival rate at 10 uM 

by MTT assay 0 0.12 Survival > 94 % CAM RAW264.7 cells at 21 uM 

0 0.33 Activity > 100 % CAM J774 macrophage assessed as cell viability at 1 ug/mL 

after 48 hrs by MTT assay 0 0.35 Activity > 65.3 % CAM J774A1 cells assessed as macrophage number at 40 to 60 

ug/ml after 3 hrs by total cell protein assay 0 0.35 Activity > 64.3 % CAM J774A1 cells assessed as macrophage number at 2.3 

ug/ml after 3 hrs by total cell protein assay 0 0.35 Activity > 23.27 % CAM J744A.1 cells at 0.5 ug/mL by MTT assay 

0 0.35 Activity > 99.5 % CAM J774A1 cells assessed as macrophage number at 4 ug/ml 

after 3 hrs by total cell protein assay 0 0.35 Activity > 5 % CAM J774A1 cells assessed as dead cells at 10 uM by Sytox 

green dye staining assay relative to untreated control 0 0.35 Activity > 94 % CAM J774A1 cells assessed as live viable cells at 10 uM by 

Sytox green dye staining assay relative to untreated control 0 0.35 Activity > 93 % CAM J774A1 cells assessed as live cells at 50 uM by calcein 

AM assay 0 0.35 Activity > 58.9 % CAM J774A1 cells assessed as live cells at 100 uM by calcein 

AM assay 0 0.35 Activity > 94.4 % CAM J774A1 cells assessed as macrophage number at 10.5 

ug/ml after 3 hrs by total cell protein assay 0 0.35 Activity > 73.4 % CAM J774A1 cells assessed as macrophage number at 3 ug/ml 

after 3 hrs by total cell protein assay 0 0.35 Activity > 16 % CAM J744A.1 cell assessed as survival rate at 10 uM 

0 0.35 Activity > 12.3 % CAM J774A1 cells assessed as macrophage number at 3.2 

ug/ml after 3 hrs by total cell protein assay 0 0.35 Activity > 55.9 % CAM J774A1 cells assessed as macrophage number at 1.7 

ug/ml after 3 hrs by total cell protein assay 0 0.35 Activity > 50 % CAM J774 macrophage at 40 uM 

0 0.36 Activity > 100 % Cytotoxicity against murine J774 cells (MC) assessed as cell 

viability at 0.1 ug/mL after 18 hrs by MTT assay 0 0.36 Activity > 100 % Cytotoxicity against murine J774 cells assessed as cell viability 

at 10 ug/mL after 18 hrs by MTT assay 0 0.36 Activity > 100 % Cytotoxicity against murine J774 cells assessed as cell viability 

at 1 ug/mL after 18 hrs by MTT assay 0 0.39 Activity > 11.35 % CAM J744A.1 cells at 0.005 ug/mL by MTT assay 

0 0.39 Activity > 12.35 % CAM J744A.1 cells at 0.05 ug/mL by MTT assay 

0 0.41 Activity > 70.83 % CAM J744A.1 cell assessed as survival rate 

0 0.43 Activity > 0.95 % CAM J774 cells at 100 uM relative to 5-

((hydroxyimino)methyl)-2.2-dimethyl-2H-benzo[d]imidazole 

1.3-dioxide" 
0 0.43 Activity > 42.21 % Unspecific cytotoxicity against murine J774 macrophages at 

100 ug/ml 0 0.43 Activity > 41.5 % CAM J774 cells assessed as cell viability at 100 ug/ml by MTT 

assay 0 0.44 Activity > 50 % CAM J774 macrophage at 400 uM 

0 0.44 Activity > 88.2 % CAM J774 cells infected with Mycobacterium bovis BCG 

assessed as cell viability at 100 ug/ml by MTT assay 0 0.44 Activity > 0.76 % CAM J774 macrophages at 2.1 uM after 24 hrs by resazurin 

test 0 0.44 Activity > 4.89 % CAM J774 macrophages at 8.6 uM after 24 hrs by resazurin 

test 0 0.44 Activity > 18.88 % CAM J774 macrophages at 21.7 uM after 24 hrs by resazurin 

test 0 0.44 Activity > 51.8 % CAM J774 cells at 400 uM after 48 hrs by MTT assay 

0 0.44 Activity > 2.11 % CAM J774 macrophages at 4.3 uM after 24 hrs by resazurin 

test 0 0.45 Activity > 51.17 % CAM J774 cells assessed as cell viability at 100 ug/mL after 24 

hrs by MTT assay 0 0.45 Activity > 95.34 % CAM RAW264.7 cells assessed as cell viability at 1 uM after 

24 hrs by MTT assay relative to control 0 0.45 Activity > 48.86 % CAM J774 cells assessed as cell viability at 10 ug/ml by MTT 

assay 0 0.46 Activity > 95.42 % CAM RAW264.7 cells assessed as cell viability at 100 uM after 

24 hrs by MTT assay relative to control 0 0.46 Activity > 75.95 % Cytotoxicity against Mycobacterium bovis Bacillus Calmette-

Guerin infected mouse J774 cells assessed as cell viability at 

150 ug/ml after 48 hrs by MTT assay 
0 0.47 Activity > 81.68 % Cytotoxicity against Mycobacterium bovis Bacillus Calmette-

Guerin infected mouse J774 cells assessed as cell viability at 

100 ug/ml after 48 hrs by MTT assay 
0 0.47 Activity > 89 % Cytotoxicity against Mycobacterium bovis Bacillus Calmette-

Guerin infected mouse J774 cells assessed as cell viability at 

50 ug/ml after 48 hrs by MTT assay 
0 0.47 Activity > 93.57 % CAM J774 cells assessed as cell viability at 1 ug/ml by MTT 

assay 0 0.33 IC50 < 6 uM Cytotoxicity against EL-4 cell line (mouse thymoma cells) 

0 0.39 IC50 < 21.41 uM Inhibition of Bacillus anthracis lethal toxin-induced 

cytotoxicity in mouse RAW264.7 cells 1 0.54 IC50 < 221.07 uM CAM J774 cells after 48 hrs by MTT assay 

1 0.54 IC50 < 2256.3 uM CAM J774 cells after 24 hrs by resazurin assay 

1 0.54 IC50 < 565.75 ug ml-1 CAM J774 cells after 24 hrs by MTT assay 

1 0.55 IC50 < 508.6 uM CAM RAW264.7 cells assessed as cell viability after 4 hrs by 

MTT assay 1 0.56 IC50 < 25.51 uM In vitro CAM J774 macrophages. 

1 0.56 IC50 < 736.2 uM CAM J774 cells assessed as cell viability after 48 hrs by alamar 

blue assay 
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1 0.57 IC50 < 72.79 uM CAM J774 macrophages after 48 hrs by MTT assay 

1 0.58 IC50 < 0.24 uM Inhibitory concentration required for cytotoxicity in J774.2 

murine macrophage-like cells 1 0.58 IC50 < 416.67 ug ml-1 CAM J774 cells after 24 hrs 
a Cutoff used was the threshold value recommended by REACH for this assay (in experimental outcomes) or the average value for 

all compounds in ChEMBL for this assay (in predicted outcomes). The J774 cell lines are Macrophage Cells (MC) and RAW264.7 

is a murine macrophage-like cells (MMLC). CAM is Cytotoxicity Against Macrophage. 
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Table 9. Theoretic prediction of some endpoints for G1 interaction with human protein targets 

Target name ID p(1) Res. Lev. Type Rel Cutoff Units 

C-C chemokine receptor type 3 3473 0.78 -0.63 0.002 Emax > 56.25 % 

C-C chemokine receptor type 3 3473 0.63 -0.53 0.002 Kb > 0.01 uM 

C-C chemokine receptor type 1 2413 0.71 -0.58 0.001 ED50 < 0.00.1 uM 

Matrix metalloproteinase 12 4393 0.66 -0.55 0.001 IC50 < 5.8 uM 

Interleukin-8 2157 0.64 -0.54 0.000 IC50 < 5.3 uM 

MSR I and II 5811 0.63 -0.53 0.001 IC50 < 38.3 μM 

Acyl-CoA: cholesterol Acyltransferase 2265 0.64 -0.54 0.001 IC50 < 21.3 μM 

MSPR 2689 0.62 -0.52 0.001 Activity > 78.67 % 

MSPR 2689 0.60 -0.52 0.000 Kd > 9.74 uM 

MCSFreceptor 1844 0.62 -0.52 0.001 Activity > 100.33 % 

MCSFreceptor 1844 0.61 -0.52 0.000 IC50 < 1.38 μM 

MMIF 2085 0.70 -0.57 0.001 IC50 < 65.1 μM 

MMIF 2085 0.60 -0.51 0.001 Activity > 36 % 
a MMIF is Macrophage Migration Inhibitory Factor, MCSF is Macrophage Colony Stimulating Factor, MSPR is Macrophage-

Stimulating Protein Receptor,  MSR is Macrophage Scavenger Receptor I and II  
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FIGURES TO BE INSERTED IN THE TEXT 

 

Figure 1. Analysis of the Domain of Application of the model 

 

Figure 2. Dose-Response of cytotoxicity in Balb/C mouse peritoneal macrophages marked with 

CD14Pe/7AAD exposed to different concentrations of G1 

 

Figure 3. Pseudo-color smooth projection of MFI values over FSC vs. SSC plot after administration of G1 at 

cmax. Total cell populations (A) or Macrophages population (C.B.D.E.F) 

 

Figure 4.  Effect of G1 on Balb/C mouse macrophages culture primary and were exposed to different 

concentrations ((10, 8, 6, 4, and 2 µg/mL) for a period of 24 hours The results are expressed as Mean Intensity 

Fluorescence (MFI) of control values N = 6 animals per group and 1.106 Cell; NS= Not Statistically significant 

differences p ≤ 0.05 for the same groups.  Dark Green=macrophages labeled with CD14PE and stained with 

7AAD (Dead), Dark Purple = macrophages labeled CD14 PE (live) 

 

Figure 5. Results of flow cytometry for Balb/C mouse peritoneal macrophages exposed to G1 at 10 μg/mL 

 

Figure 6. Masterplex interface illustrating MFI vs. conc. effect of G1 in Balb/c mouse peritoneal macrophages 

(A) and Sigmoidal curve representative of the 5PL model (B). 

 

 

 

 

 

 

 

 


