

The 2nd International Electronic Conference on Antioxidants

07-09 April 2025 | Online

Clarifying the Antioxidant and Antiproliferative Potential of *Nyctanthes arbor-tristis* **Extracts** by Combining Network Pharmacology and Molecular Docking Approach Kalpesh Rajendra Yeole^{*1}, Raju Ratan Wadekar²

¹ Department of Pharmacognosy, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule-424001, Maharashtra, India

INTRODUCTION & AIM

Nyctanthes arbor-tristis, commonly known as Parijat, is a medicinal plant recognized for its potent antioxidant and therapeutic properties. Oxidative stress is a major contributor to various pathological conditions, including cancer, neurodegenerative disorders, and inflammatory diseases. Recent advancements in network pharmacology have facilitated the identification of bioactive phytoconstituents and their interactions with key antioxidant enzymes by integrating computational approaches such as molecular docking.

This study aims to explore the plant's potential in modulating oxidative stressrelated pathways and its role in disease mitigation.

METHODOLOGY

Phytochemical Identification:

The Screening of *NAT* phytoconstituents was done from the IMPPAT database, and bioactive compounds were selected based on pharmacological relevance.

Target Identification & Network Analysis:

We identified the therapeutic targets related to oxidative stress and antiproliferative agents from databases like Gene Cards and STRING.

ADMET & Drug-Likeness Analysis:

2

3

5

The Evaluation of pharmacokinetics and drug-likeness properties were carried out using SwissADME and pkCSM tool and top candidates were identified based on the Lipinski's Rule of Five.

Molecular Docking & MMGBSA Analysis:

The Molecular docking of selected compounds with key antioxidant (SOD1, CAT, GPx1, Nrf2) and antiproliferative (CASP3, NFKB1, NOTCH1, GSK3B, HF1A, SRC, AKT1, MMP9) targets was carried out using Auto Dock software.

Data Interpretation & Conclusion:

The Top candidates ranked based on docking scores and MMGBSA energy with greater Biological significance related to oxidative stress and cancer prevention potential, were analyzed.

DOCKING ANALYSIS

Table 1. Top 10 network ranked by Degree method

Rank	Phytochemical	Degree score	Docking score			
1	β -Sitosterol	222	-9.1			
2	Naringetol	202	-8.4			
3	Curlone	195	-7.6			
4	Ar- turmerone	188	-6.4			
5	Melanin	182	-4.1			

вД	KLF5	SRC		ADRB1	PDGFRB	PTPN1	HRH4	CYP3A4	MAPK14	CBX4	GPR55	MAPK9
	I TAK WILLIAM	MORIE AND		COLUMN TRANSPORT	CONTRACTOR OF THE OWNER	5720 K			eenne rans	CHILL DE CONTRACTOR	g noment	ANNI
iA 2	LGALS3	SLC9A1		ALOX5	ZAP70		MAPK8	CYSLTR2	NR1I2	DUSP3	TAAR1	MIF
und	1.1.001.000	ATT WEED			Construction		-	ACRES			***	
P6	CDK1	DRD4	FFAR1	AKT1	PIK3CD	SERPINE1	NOX1	NR3C2	PTGDR2	CASP8	NTRK3	КІТ
	AND HIS HIS	the second second	+++ + + + + + + + + + + + + + + + + + +			2 X X X X	* * 117#			-		
1	NR3C1	FRK	CCRL2	KAT6A	CCR1	PIM1	C5AR1					

This study highlights Nyctanthes arbor-tristis as a promising source of antioxidant and antiproliferative agents, with β -sitosterol emerging as the most potent candidate based on molecular docking and MMGBSA analysis. The identified phytoconstituents exhibit strong interactions with key oxidative stress-related targets (CASP3, NFKB1, NOTCH1, GSK3B, HF1A, SRC, AKT1, MMP9), suggesting their potential for therapeutic applications against oxidative stressassociated diseases.

REFERENCES

1] Ahmad V, Khan MI, Jamal QMS, Alzahrani FA, Albiheyri R. Computational molecular docking and simulation-based assessment of anti-inflammatory properties of Nyctanthes arbor-tristis Linn phytochemicals. Pharmaceuticals. 2024;17(1):18. doi: 10.3390/ph17010018.