INTRODUCTION

- Nanotechnology (1-100nm), the green synthesis of silver nanoparticles (AgNPs) provides an eco-friendly therapeutic approach due to their stability and safety. • Padina commersonii, an edible brown macroalgae found along Sri Lanka's coastal beaches, is recognized for its rich bioactive compounds, and health benefits. • The bioactive compounds found in *Padina Commersonii* can reduce silver metal ions to form nanoparticles, acting as stabilizers and capping agents.
- These AgNPs exhibit strong antioxidant properties, offering therapeutic benefits for oxidative stress-related diseases like diabetes and cancer

OBJECTIVES

• To green synthesize silver nanoparticles using *Padina sp.* extract, characterize these silver nanoparticles, and assess their antioxidant activity

Reducing agents- Polyphenolic compounds and flavonoids

Antioxidant Efficacy

•The lower the IC_{50} value, the greater the antioxidant potential.

Table 1: Antioxidant activities of Test Samples

Test Sample	DPPH	ABTS	
	IC ₅₀ (µg/ml)	IC ₅₀ (µg/ml)	
Trolox (standard)	6.01±1.73 ^a	19.5±9.861	
Extract of Padina commersonii	307.69±9.32 ^b	252.45± 8.033	
AgNPs synthesized using Padina commersonii	271.17±3.99°	195.03± 5.7535	

CONCLUSIO

Silver nanoparticles synthesized by green method using Padina commersonii show potentia Characterization confirms the AgNPs are nano in range, smooth, spherical, stable, crystal and

- The AgNPs synthesized using Padina commersonii. exhibited greater antioxidant efficacy c
- Can be used to develop food products, food packaging, skin care, haircare, wound care and

Grren Synthesis, Characterization & Evaluation of Antioxidant properties of silver nanoparticles derived from marine brown algae *Padina* sp. **R.Ragavi***, and L.D.C.Peiris Department of Zoology, University of Sri Jayewardenepura, Sri Lanka

- assay

Car. Pale After mixing Yellow

RESULTS

SEM image of AgNPs

ON		
al as an eco-friendly, sustainable therapeutic approach for diseases		Gratituc
nd dispersed without aggregation.		
compared to the crude extract of Padina commersonii		
l disease treatment		

METHODOLOGY

. Silver nanoparticles were synthesized by mixing the extract of *Padina commersonii* with silver nitrate.

• The resulting nanoparticles were characterized using several techniques, including UV-Vis spectroscopy, Dynamic Light Scattering (DLS), Zeta potential Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX) analysis, X-ray Diffraction (XRD), FTIR spectroscopy, and Raman spectroscopy. • The antioxidant properties were evaluated by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay and 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) ABTS

FTIR spectrum of *Padina sp.* extract & AgNPs

ACKNOWLEDGEMENT

de to the Department of Zoology, University of Sri Jayewardenepura, for providing the facilities For the successful completion of my undergraduate research.

Raman spectrum of AgNPs

