

The 3rd International Electronic **Conference on Catalysis Sciences**

23-25 April 2025 | Online

The impact of Copper modification on the selectivity performances of Layered Double Hydroxide-type materials

<u>Octavian-Dumitru Pavel¹, Anca Cruceanu¹, Ruxandra Bîrjega², Monica Răciulete³, Gheorghița Mitran¹, </u> Rodica Zăvoianu^{1*}

¹University of Bucharest, Faculty of Chemistry, Department of Inorganic & Organic Chemistry, Biochemistry and Catalysis, 4-12 Regina Elisabeta Av., S3, 030018, Romania

²National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, 077125, Măgurele, Romania

³Ilie Murgulescu Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania

INTRODUCTION & AIM

>Usually, in the presence of base active sites, the Claisen-Schmidt condensation reaction between cyclohexanone and benzaldehyde leads to the formation of a *di*-condensed compound, *e.g.* 2,6-dibenzylidene cyclohexanone^[1]. The optimization of layered double hydroxide-type catalysts by means of the partial substitution of Mg²⁺ with Cu²⁺ cations leads to a shift in the selectivity towards the *mono*-condensed product (e.g. 2-benzylidene cyclohexanone). Traditionally, the Layered Double Hydroxides (LDH) are synthesized by the co-precipitation method which involves many steps and significant energy consumption. Mechano-chemical synthesis is a viable approach consisting of a simple mixing of precursors with hydrolysis agents without further addition of water. >The aim of this study was to perform a comparative analysis of the physico-chemical properties and catalytic activity in Claisen-Schmidt condensation of Cu-LDH prepared by co-precipitation and mechano-chemical methods in presence of inorganic/organic alkalis from chlorides, nitrates and sulfate as metal precursors.

METHOD

MDPI

The Mg_{0.375}Cu_{0.375}Al_{0.125} LDH materials were obtained at pH 10 by coprecipitation (CP) / mechano-chemical (MC) methods using metal chlorides, nitrates and sulfate as precursors and inorganic (NaOH/Na₂CO₃) / organic (Tetra Methyl Ammonium Hydroxide) as base solution under low supersaturation.

RESULTS & DISCUSSION

□In the mechano-chemical method, all precursors were mechanically mixed in a Mortar Grinder RM 200 for 1h.

□All dried samples were calcined in air atmosphere at 460 °C during 18h for mixed oxides synthesis.

The resulted mixed oxides were hydrated with *bi*-distilled water in order to reconstruct the layered structure by *memory effect*.

The characterization of samples has been carried out by XRD, DRIFT, BET, irreversible adsorption of organic acids of different *pKa* values.

□Claisen–Schmidt condensation was carried out for 2h at 120 °C by placing a mixture of cyclohexanone (5 mmol) and benzaldehyde (10 mmol) under batch and solvent-free conditions with a specified amount of catalyst (wt. benzaldehyde/catalyst ratio of 10/1).

samples synthesized with TMAH

dried samples prepared from nitrate precursors LDH-MgCuAI-NO₃⁻-CP (blue), LDH-MgCuAl-NO₃⁻-MC (red) (TMAH as organic alkalis)

Linear trend variation of cyclohexanone conversion vs. total number of base sites for samples synthesized with TMAH

9

CONCLUSION

✓ Pure layered structure was contaminated with different amounts of copper hydroxide depending on the metal salt precursors.

 \checkmark The *memory effect* did not lead to a total reintegration of the Cu²⁺ in the octahedral positions of the layered structure, since part of it remained as stable CuO, obtained in the calcination step.

✓The basicity and the catalytic activities for Claisen–Schmidt condensation showed similar variation trends, e.g., reconstructed LDH > parent LDH > mixed oxides.

 \checkmark The copper's presence in the LDH structure decreased the basicity, leading to a higher selectivity to the mono-condensed product.

✓The copper-containing catalysts also promoted the transformation of benzaldehyde into benzoic acid as a side reaction.

REFERENCES

[1] B. Cojocaru, B.C. Jurca, R. Zavoianu, R. Bîrjega, V.I. Parvulescu, O.D. Pavel, Catalysis Communications 170 (2022) 106485

ECCS2025.sciforum.net