Green hydrogen production from catalytic ammonia decomposition

Rahat Javaid, Jochen Lauterbach

University of South Carolina, Columbia, SC, USA

Why Ammonia?

- Ammonia is a potential H₂ carrier with high H₂ capacity (17.8 wt-% H₂).
- Ammonia has easy storage in inexpensive and low-pressure containers.
- Ammonia has well-established distribution and handling procedures.

Research Background

Catalysts play a pivotal role in the decomposition of ammonia at mild reaction conditions to produce green hydrogen

From the literature, we come to know as;

- 1. Ru-based catalysts are efficient for ammonia decomposition at lower temperature conditions.
- 2. The performance of the Ru catalyst is greatly affected by the material's properties as support.

Only few studies on mixed oxide or layered oxide materials. In this study, CeO_2 impregnated Al_2O_3 supports were used to fabricate Ru catalysts. The synthesized catalysts were applied to ammonia decomposition.

Experimentation

Catalyst synthesis

- CeO₂ was loaded on surface of γ -Al₂O₃ by impregnation.
- CeO₂-impregnated γ -Al₂O₃ supports were prepared in various Ce/Al molar ratios of 0.05-1.0.
- 1 wt-% Ru was loaded on CeO_2 -impregnated γ -Al₂O₃ supports by impregnation method.

Ammonia decomposition reactor

- Single channel packed bed reactor was used.
- GC-TCD was used for analysis of $\rm H_2$ and $\rm N_2$ produced.
- Temperature: 250-450°C; Pressure: atmospheric; SV: 5400 h⁻¹.

Results and discussion

- Ru on γ -Al₂O₃ showed the lowest activity.
- Ru on CeO₂/γ-Al₂O₃ with Ce/Al molar ratios 0.5 and 1.0 showed comparable activity to pure CeO₂-supported Ru catalyst.

Results and discussion

- Surface areas of Ru/CeO₂/γ-Al₂O₃ catalysts with Ce/Al molar ratios 0.5 and 1.0 are close to pure CeO₂-supported Ru catalyst.
 XPD results of Ru/CeO₄ is Al O₂ actalysts with Ce/Al molar ratios
- XRD results of Ru/CeO₂/γ-Al₂O₃ catalysts with Ce/Al molar ratios 0.5 and 1.0 are close to pure CeO₂-supported Ru catalyst.

- The surface of Ru/CeO₂/γ-Al₂O₃ catalysts with Ce/Al molar ratios 0.5 and 1.0 are highly covered with CeO₂.
- Therefore Ru/CeO₂/γ-Al₂O₃ catalysts with Ce/Al molar ratios 0.5 and 1.0 show comparable activity to Ru/CeO₂ catalyst.

Summary and Conclusion

- Physical and chemical characteristics of Ru/CeO₂/γ-Al₂O₃ catalysts with Ce/Al molar ratios of 0.5 and 1.0 are close to those of a pure CeO₂-supported Ru catalyst.
- Ru/CeO₂/γ-Al₂O₃ catalysts with lower amount of CeO₂ present cost-effective and efficient catalysts.

