

Noble metal-modified TiO₂ obtained by the sol-gel method: Ethanol photodegradation

<u>Alexandra ILIE¹, Crina ANASTASESCU¹, Luminita PREDOANA¹, Jeanina PANDELE-CUSU¹, Adriana RUSU¹, Silviu PREDA¹, Daniela C. CULITA¹, Veronica BRATAN¹, Valentin Adrian MARALOIU², Valentin S. TEODORESCU^{2,3}, Ioan BALINT¹ and Maria ZAHARESCU¹</u>

¹ "Ilie Murgulescu" Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, 6th District, Romania ² National Institute of Materials Physics, 405 bis Atomistilor Street, 077125 Magurele-Ilfov, Romania

³ Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania

RESULTS & DISCUSSION

INTRODUCTION & AIM

This work aimed to prepare by the sol-gel method TiO_2 and Pt-modified TiO_2 with photocatalytic activity for the oxidative degradation of ethanol in gaseous phase under simulated solar light irradiation.

Nanopowders with different compositions, sizes, and dimensional distributions can be obtained using the sol-gel method. The dopant was added either during synthesis (in a single step, TiO_2 -Pt_R) or by post-synthesis impregnation (TiO_2 -Pt_Imp) to the sol-gel method used for obtaining the powder photocatalysts.

The following is an increasing order of powder reactivity in the photocatalytic tests: TiO_2 , TiO_2 -Pt insitu, and TiO_2 -Pt by post-synthesis impregnation.

METHOD

The characterization methods were infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray fluorescence (XRF), UV-Vis and the determination of the BET-specific surface area. The samples were tested as photocatalysts in the oxidative degradation of ethanol in the gaseous phase and under solar simulated light irradiation.

The samples was noted TiO_2 , TiO_2 -Pt_R (doped in-situ) and TiO_2 -Pt_Imp (doped by impregnation post-synthesis).

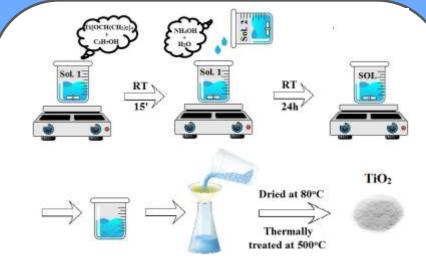
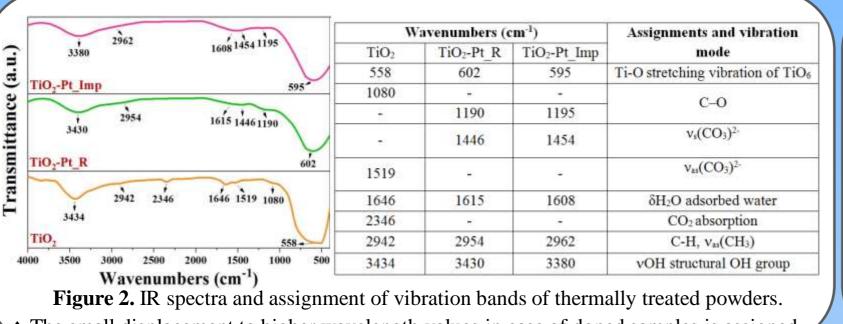



Figure 1. TiO_2 preparation by the sol-gel method. <u>Reagents</u>: titanium isopropoxide for TiO_2 source and $PtCl_4$ for dopant (1 mol%). Resulted powders are white for TiO_2 and light grey for Pt doped TiO_2 .

• The small displacement to higher wavelength values in case of doped samples is assigned.

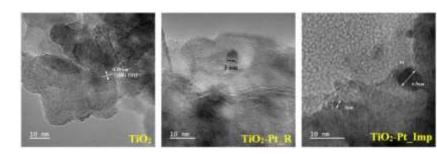


Figure 3. TEM micrographs of the nanopowders.

• The TiO₂ sample is formed by aggregates of crystallites with dimensions of 20-60 nm.

♦ In case of TiO₂-Pt_R the surface of the aggregates is smoother.
♦ TiO₂-Pt_Imp present Pt nanoparticles are spherical and have dimensions from 2.5 nm to 7 nm.

S_{BET} - 35.0 m²/g V_{tetal} - 0.124 cm³/g

PTH - 17.00 nm

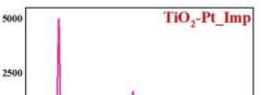


Table 1. The lattice parameters of the thermally treated samples.

Formala	Crystalline	Lattice parameters (Å)			Crystallite
Sample	phase	a	b	c	size (nm)
TiO ₂	Anatase	3.786	3.786	9.506	12.9
TiO2-Pt R	Anatase	3.789	3.789	9.495	12.8
TiO2-Pt Imp	Anatase	3.789	3.789	9.515	13.8

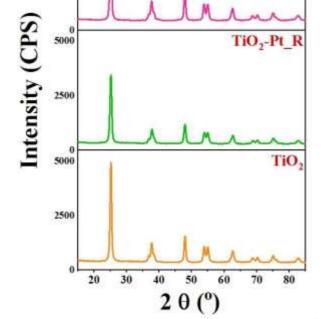
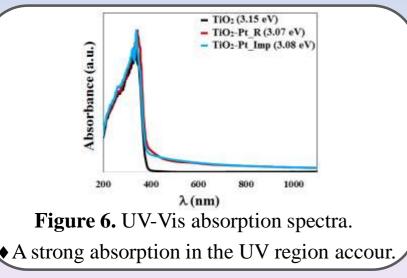
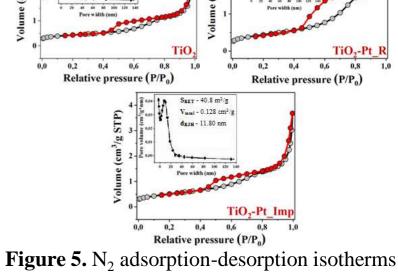



Figure 4. XRD patterns of the samples.

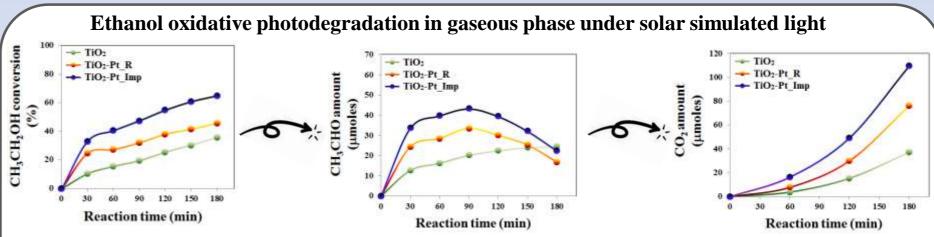
All samples exhibit a single anatase phase.
Doping with Pt does not alter the structure.



CONCLUSIONS

Table 2. Elemental composition of the powders.

Sample	Composition	Values (Mass %)	Line
TiO ₂	Ti	59.25	Ti-KA
	0	39.57	O-KA
	Traces	1.18	
TiO ₂ -Pt_R	Ti	58.72	Ti-KA
	0	39.41	O-KA
	Pt	0.51	Pt-LA
	Traces	1.36	
TiO2-Pt_Imp	Ti	59.32	Ti-KA
	0	38.25	O-KA
	Pt	1.05	Pt-LA
	Traces	1.38	


The XRF confirmed the presence of Pt in the doped samples indicating successful incorporation of Pt.

BJH - 9.68 nm

and pore size distributions of powders.

◆ All three samples exhibit type IV(a) isotherms with H3 hysteresis loops which is characteristic of mesoporous materials.

•Oxidative degradation of ethanol leads to acetaldehyde (CH₃CHO) and then, through successive reactions, to the intermediate formation of formic acid (HCOOH - in trace amounts) and finally to CO_2

TiO₂ nanopowders were obtained using the sol-gel method, and doping with Pt was done in-situ or followed by impregnation post-synthesis.
The structural, morphological, and optical characterizations of the obtained nanopowders were analyzed in according to their photocatalytic activity.
After 3 hours of solar simulated light irradiation, TiO₂-Pt_Imp powder achieved the highest conversion of ethanol photodegradation (64.82%).

ECCS-The 3rd International Electronic Conference on Catalysis Sciences, 23-25 April 2025