

# The 3rd International Electronic Conference on Catalysis Sciences

23-25 April 2025 | Online

## Copper-based quantum dots for efficient photodegradation of methyl orange dye

Gabriela Albuquerque<sup>1</sup>, Hugo Oliveira<sup>1</sup>, Max Taylo<sup>1</sup>, Goreti Pereira<sup>2</sup>, Giovannia A. L. Pereira<sup>1</sup> <sup>1</sup>Department of Fundamental Chemistry, Federal University of Pernambuco, PE, Brazil <sup>2</sup>University of Aveiro, Department of Chemistry & CESAM, Portugal

## INTRODUCTION

In recent years, has increased the search for more sustainable technologies that minimize environmental impact while providing social benefits. Among the most common pollutants being addressed in natural and wastewater, dyes stand out as a significant concern. Advanced Oxidative Processes (APOs) stand out as one of the most widely used methodologies for environmental remediation [1]. Thus, photocatalysis has emerged as a more efficient strategy, as an alternative to commonly used AOPs. In this study, CuFeSe<sub>2</sub> quantum dots (QDs) were used as the semiconductor material and sunlight as the energy source to drive the reduction reactions. QDs are particularly notable due their unique optical properties, as well as their low production costs. Additionally, these nanocrystals can catalyze the decomposition of  $H_2O_2$ , leading to the generation of anionic radicals [2]. Herein, a 10 ppm solution of methyl orange (MO) dye was brought into contact with the QD suspension, both in the presence and absence of  $H_2O_2$ , and exposed to a full-spectrum solar lamp, simulating sunlight.



#### Sample composition for a final volume of 3 mL.

| Component  | Concentration | V (mL) |  |
|------------|---------------|--------|--|
| MO         | 10 ppm        | 1.57   |  |
| $H_2O_2$   | 0.1 M         | 0.10   |  |
| CuFeSe, OD | _             | 1 00   |  |

#### **RESULTS & DISCUSSION**

MDPI

#### Absorption spectra of the assays in dark and sunlight.



Dye removal percentage in the samples at different times in the absence and under sunlight.

| Sampla                                 | C/C <sub>0</sub> (%) |      |  |
|----------------------------------------|----------------------|------|--|
| Sample                                 | Dark                 | Sun  |  |
| MO-H <sub>2</sub> O <sub>2</sub> 0 min | 100                  | 100  |  |
| MO-H <sub>2</sub> O <sub>2</sub> 2 h   | 99.7                 | 97.4 |  |
| MO-QD 0 min                            | 100                  | 100  |  |



1.00

#### ACKNOWLEDGEMENTS















CENTRE FOR ENVIRONMENTAL AND MARINE STUDIES

#### REFERENCES

[1] Bi, W. et al. 2024. 10.17159/wsa/2024.v50.i2.4078.

[2] Shen, H. et al. 2022. 10.3390/nano12183130.

| MO-QD 2 h                                  | 90.2 | 90.3 |
|--------------------------------------------|------|------|
| MO-H <sub>2</sub> O <sub>2</sub> -QD 0 min | 96.6 | 96.6 |
| MO-H <sub>2</sub> O <sub>2</sub> -QD 1h30  | 73.6 | 60.2 |
| MO-H <sub>2</sub> O <sub>2</sub> -QD 2h    | 61.4 | 55.8 |

## CONCLUSION

The preliminary results showed a decrease of MO concentration in the presence of QDs,  $H_2O_2$ , and light irradiation. These results represent a promising advancement in photodegradation technology while reinforcing a commitment to environmental sustainability.

ECCS2025.sciforum.net