

The 3rd International Electronic Conference on Catalysis Sciences

23-25 April 2025 | Online

An Overview of the Photocatalytic Performance of TiO₂ Nanoparticles for Dye Degradation

<u>Newton Neogi</u>^{*1}, Kristi Priya Choudhury¹, Sabbir Hossain¹, Ibrahim Hossain¹ ¹ Department of Environmental Research, Nano Research Centre, Sylhet 3114, Bangladesh

ABSTRACT

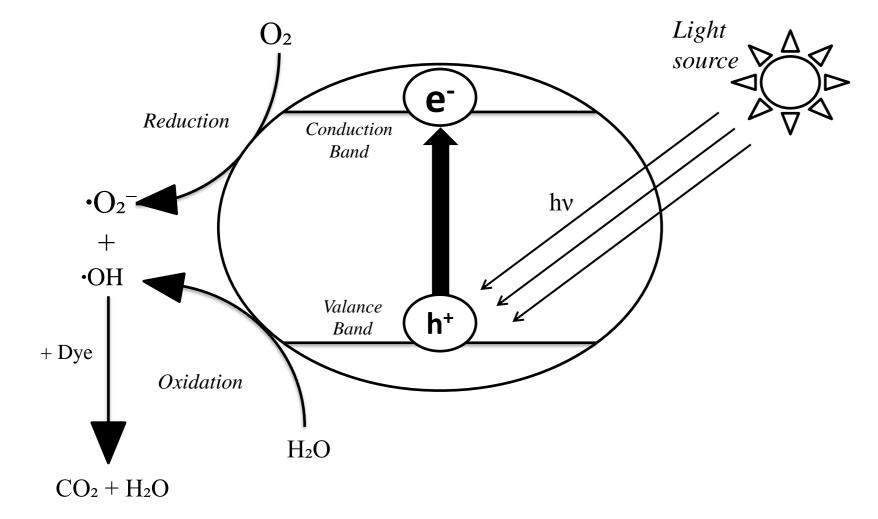
Titanium dioxide (TiO₂) nanoparticles have become an exceptionally effective photocatalyst for the degradation of organic dyes in wastewater treatment. This breakthrough has been related to the distinctive physicochemical features inherent to these nanoparticles. These characteristics include a substantial surface area, remarkable chemical stability, and a potent oxidative capacity upon exposure to ultraviolet (UV) radiation, making TiO₂ a great photocatalyst. This work examines processes involving photocatalytic activity in TiO₂, focusing on the production of reactive oxygen species (ROS) via the formation of electronhole pairs via photoinduced reactions. This research focuses on significant parameters that affect photocatalytic performance. These factors include particle size, crystal phase (anatase, rutile, or brookite), surface changes, and doping with metals or non-metals to enhance visible light absorption. This paper examines current improvements in TiO₂ nanoparticle production methods and their effects on the effectiveness of photocatalytic processes. An examination of the applications of TiO₂ for the degradation of synthetic dyes, including methylene blue, rhodamine B, and azo dyes, is conducted to highlight its potential to mitigate environmental issues caused by industrial dye pollution. Ultimately, challenges such as the fast recombination of charge carriers and the diminished efficacy of visible light are acknowledged, with several solutions suggested to mitigate these issues. This study seeks to elucidate the function of TiO₂ nanoparticles in dye degradation and to provide a foundation for future research aimed at producing more efficient and ecologically sustainable photocatalytic systems.

Parameter	Optimal Condition	Impact on Performance	
Particle Size	10–50 nm	↑ Surface area \rightarrow ↑ active sites	
Crystal Phase	Anatase (Eg = 3.2 eV)	Higher charge separation	
Doping	Ce, Eu, Gd (1–5 wt%)	\downarrow Bandgap \rightarrow Visible light absorption	
рН	Alkaline (pH 9–11)	↑ •OH generation	
Light Source	UV (λ = 254 nm) > Visible	Direct bandgap excitation	
Dye Concentration	<20 mg/L	Avoid catalyst saturation	
Catalyst Loading	0.5–1.0 g/L	Balance between activity and cost	

KEY PARAMETERS AFFECTING EFFICIENCY

MDPI

BACKGROUND


Industrial dye pollution poses severe environmental and health risks due to its persistence and toxicity in water systems. Traditional wastewater treatment methods often fail to completely degrade complex dye molecules, necessitating advanced solutions. Titanium dioxide (TiO₂) nanoparticles have emerged as a highly effective photocatalyst for dye degradation, leveraging their unique physicochemical properties such as high surface area, chemical stability, and potent oxidative capacity under UV/visible light. This poster explores the mechanisms of TiO_2 photocatalysis, key factors influencing efficiency (e.g., crystal phase, doping, synthesis methods), and applications in degrading dyes like methylene blue and rhodamine B. Challenges such as charge carrier recombination and limited visible-light absorption are also addressed, alongside innovative solutions like heterojunctions and rareearth doping.

MECHANISM OF PHOTOCATALYSIS

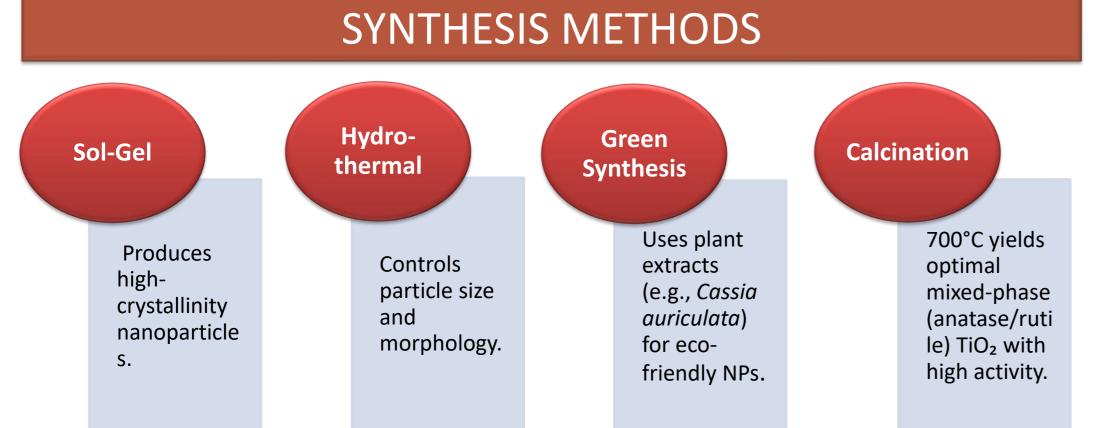
1.Light Absorption: TiO₂ (bandgap: 3.2 eV for anatase) absorbs UV light, exciting electrons (e⁻) from the valence band (VB) to the conduction band (CB), leaving holes (h⁺).
2.Radical Formation:

- 1. h^+ reacts with H₂O to produce hydroxyl radicals (·OH).
- 2. e^{-} reduces O_2 to superoxide radicals (O_2) .

3.Dye Degradation: Reactive radicals mineralize dyes into CO₂, H₂O, and inorganic ions.

EFFICIENCY ENHANCEMENT STRATEGIES

Doping:


- Rare Earths (Ce, Eu, Gd): Lower bandgap, improve visible light absorption.
- Non-Metals (N, C): Extend activity into visible spectrum.
- □ Heterojunctions:
 - TiO₂/GO: 99% dye degradation via enhanced charge transfer.
 - **BiOCI/TiO₂**: Internal electric fields improve carrier separation.

□ Nanocomposites:

• rGO-Fe₃O₄/TiO₂: 99% efficiency for malachite green under visible light.

DEGRADATION OF COMMON DYES

Dye Name	Photocatalyst System	Degradation Efficiency (%)	Time	Light Source
Toluidine Blue O (TBO)	Ce ³⁺ :TiO ₂ ; Eu ³⁺ :TiO ₂ Nanowires	~90%	80, 120 min	UV
Methylene Blue (MB)	Gd-doped TiO₂ (5 wt% Gd)	90%	10 min	Visible (405 nm)
Methylene Blue (MB)	Pristine TiO ₂	76%	10 min	Visible (405 nm)
Malachite Green (MG)	rGO-Fe₃O₄/TiO₂	99%	-	Visible
Rhodamine B (RhB)	Fe₃O₄@TiO₂/Ag, Cu	86%	90 min	Visible
Methylene Blue (MB)	ZnO-TiO₂/rGO	99%	63 min	UV
Methylene Blue (MB)	Au-WO ₃ @TiO ₂	94.5%	240 min	Solar
Acridine Orange	ZnO-TiO ₂	96%	120 min	Visible & Solar
Rhodamine B (RhB)	WO₃QDs/GO/TiO₂ (GOWT)	80%	60 min	Visible
Acid Blue 25	N-TiO₂/Ag₃PO₄@GO	98%	20 min	-
Rhodamine B (RhB)	BiOCI/TiO₂ (BCTO)	99.1%	3 hours	Visible
Reactive Green 12 (RG 12)	TiO₂ on UV-C activated PET	Degraded easily	-	UV & Visible

CONCLUSION

TiO₂ nanoparticles offer a highly effective, stable, and tunable solution for dye degradation in polluted water. With ongoing advancements in synthesis, doping, and composite formation, these photocatalysts are paving the way for sustainable and scalable environmental remediation. Continued research should focus on improving visible-light responsiveness and transitioning to large-scale industrial implementation.

REFERENCES

- H. Kumari *et al.,* "A Review on Photocatalysis Used For Wastewater Treatment: Dye Degradation," Jun. 01, 2023, *Institute for Ionics*. doi: 10.1007/s11270-023-06359-9.
- C. W. Lai, J. C. Juan, W. B. Ko, and S. Bee Abd Hamid, "An overview: Recent development of titanium oxide nanotubes as photocatalyst for dye degradation," 2014, *Hindawi Limited*. doi: 10.1155/2014/524135.
- M. Mehta, M. Sharma, K. Pathania, P. Kumar Jena, and I. Bhushan, "Degradation of synthetic dyes using nanoparticles: a mini-review", doi: 10.1007/s11356-021-15470-5/Published.
- K. Sathiyan, R. Bar-Ziv, O. Mendelson, and T. Zidki, "Controllable synthesis of TiO2 nanoparticles and their photocatalytic activity in dye degradation," *Mater Res Bull*, vol. 126, Jun. 2020, doi: 10.1016/j.materresbull.2020.110842.
- M. K. Singh and M. S. Mehata, "Phase-dependent optical and photocatalytic performance of synthesized titanium dioxide (TiO2) nanoparticles," *Optik (Stuttg)*, vol. 193, Sep. 2019, doi: 10.1016/j.ijleo.2019.163011.
- M. G. Kim *et al.*, "Effects of Calcination Temperature on the Phase Composition, Photocatalytic Degradation, and Virucidal Activities of TiO2Nanoparticles," ACS Omega, vol. 6, no. 16, pp. 10668–10678, Apr. 2021, doi: 10.1021/acsomega.1c00043.
- Nasikhudin, M. Diantoro, A. Kusumaatmaja, and K. Triyana, "Study on Photocatalytic Properties of TiO2 Nanoparticle in various pH condition," in *Journal of Physics: Conference Series*, Institute of Physics Publishing, May 2018. doi: 10.1088/1742-6596/1011/1/012069.

ECCS2025.sciforum.net