

The 3rd International Electronic Conference on Catalysis Sciences

23-25 April 2025 | Online

Efficient photocatalytic degradation of nadolol using silver-modified PMMA/TiO₂

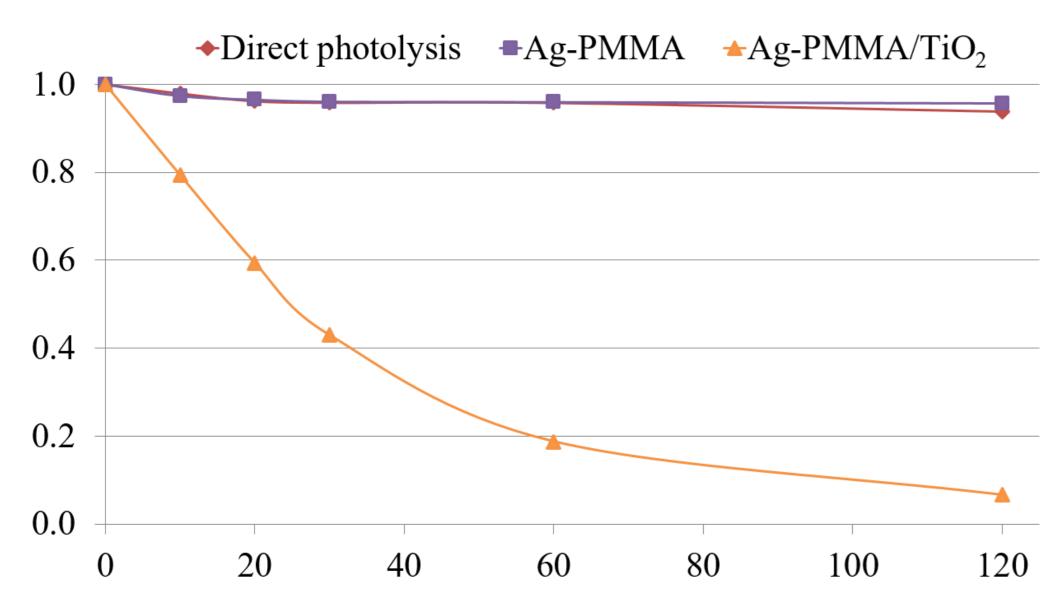
Andrijana Bilić^{1,2}, Milinko Perić^{1,2}, Stevan Armaković^{2,3}, Sanja J. Armaković^{1,2}

¹University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Novi Sad, Serbia ²Association for the International Development of Academic and Scientific Collaboration (AIDASCO), Novi Sad, Serbia

³University of Novi Sad, Faculty of Sciences, Department of Physics, Novi Sad, Serbia

MDPI

INTRODUCTION & AIM


Nadolol, a commonly used β -blocker, is frequently detected environmental wastewater, posing issue. an in Photocatalysis, particularly with TiO₂, has been explored as a solution for such pollutants, but TiO₂'s effectiveness is limited by the high recombination rate of electron-hole pairs. To enhance its photocatalytic performance, TiO₂ is modified using polymers like poly(methyl often methacrylate) (PMMA), which is low-cost, non-toxic, and water-insoluble. In this study, PMMA was modified with silver and combined with TiO₂ nanopowder to degrade nadolol under UV-LED radiation.

METHOD

To prepare 10 wt% Ag-doped PMMA, $AgNO_3$ was dissolved in ultrapure water. PMMA polymer powder was then gradually added to resulting solution and mixture was stirred for 4 h at room temperature. After standing overnight, the precipitate was dried at 80 °C for 2 h. TiO₂ with 10 wt% Ag-PMMA (Ag-PMMA/TiO₂) was prepared by mixing TiO₂ and Ag-PMMA powders for 30 min. The degradation kinetics were monitored using highperformance liquid chromatography, and the pH changes was observed using a pH meter.

RESULTS & DISCUSSION

After 120 min of UV-LED irradiation, the Ag-PMMA/TiO₂ material showed significantly higher removal efficiency of nadolol compared to direct photolysis and degradation using Ag-PMMA. Namely 94 % removal efficiency of nadolol significantly outperforming direct photolysis and Ag-PMMA treatment (Figure 1).

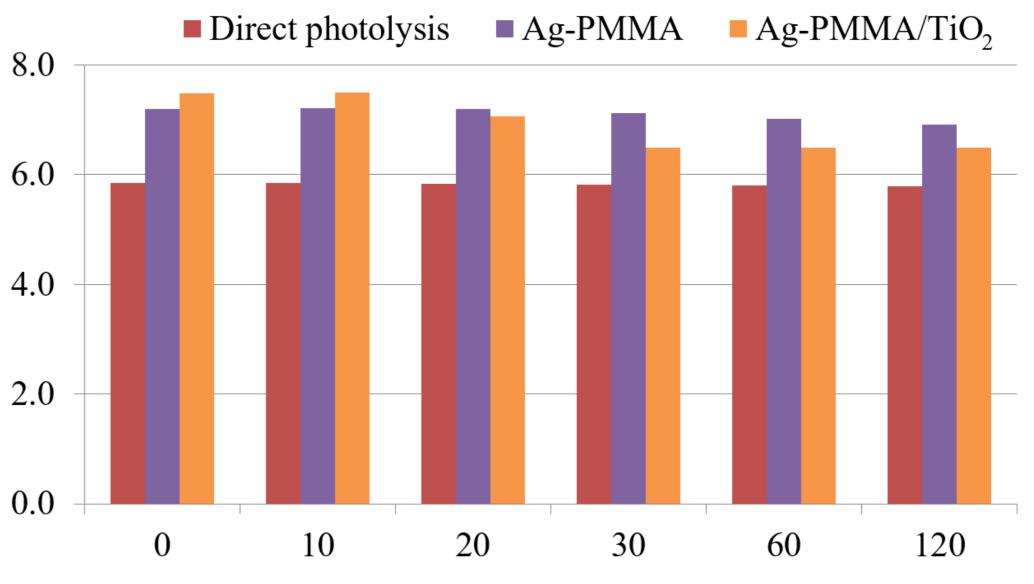


Figure 2. The pH change during nadolol degradation under UV-LED radiation

The pH changes during the experiments were monitored, showing that the catalyst presence influenced the pH values (Figure 2). During photocatalytic degradation, the pH decreased slightly from 7.5 to 6.5 for Ag-PMMA/TiO₂, indicating the formation of acidic intermediates. The degradation followed pseudo-first-order kinetics, as evidenced by the calculated rate constant of $19.1 \cdot 10^{-3}$ 1/min with the linearity correlation coefficients of 0.9973 for the first 30 min of degradation.

Figure 1. The kinetics of nadolol degradation under UV-LED radiation

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the financial support of the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (451-03-66/2024-03/ 200125, 451-03-65/2024-03/200125 & 451-03-66/2024-03/200358), the AIDASCO (www.aidasco.org), and the Serbian Natural History Society (<u>https://spd.rs/</u>).

CONCLUSION

The results indicated that Ag-PMMA/TiO₂ is efficient in the photodegradation of nadolol, achieving a 94% degradation rate within 120 minutes. The photocatalytic degradation of nadolol followed the pseudo-first order. The observed photocatalytic activity demonstrated the practical applicability of the novel materials.

ECCS2025.sciforum.net