

The 3rd International Electronic Conference on Catalysis Sciences

23-25 April 2025 | Online

Polyoxometalate-Decorated MWCNTs as High-Performance Electrocatalysts for Oxygen Reactions

Inês S. Marques^{1*}, Israël-Martyr Mbomekallé², Anne-Lucie Teillout², Pedro de Oliveira², Diana M. Fernandes¹

MDPI

¹REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal ²Laboratoire l'Institut de Chimie Physique – ICP Université Paris-Saclay –CNRS UMR 800, Paris, France

INTRODUCTION & AIM

- To meet global energy demands, it's vital to develop affordable, high-quality electrocatalysts (ECs) materials.
- Current reliance on noble metal-based electrocatalysts in fuel cells and water-splitting devices is limited by their high cost, scarcity, and operational instability.

- Polyoxometalates (POMs) are presented as a promising alternative, offering a cost-effective and efficient solution for electrocatalysis.
- Synthesis of two new composites based on doped multiwalled carbon nanotubes (MWCNT_N8) and two Wells-**Oxygen Reduction Reaction** Dawson sandwich POMs.

METHOD

Wells-Dawson sandwich Polyoxometalates

- Nanoscale Metal-Oxo anionic clusters; \checkmark
 - Unique structures and compositions; \checkmark
- Tunable redox and (electro)catalytic properties;
- Capability to mediate multi-electron transfer reactions;
- Tunable redox properties via metal substation.

j (mA cm⁻²)

OER

ΔE

ORR

Oxygen Evolution Reaction

Doped multi-walled carbon nanotubes

CONCLUSION

- Elemental mapping confirmed uniform immobilization of POMs on MWCNT N8.
- ✓ The CoNi₃@MWCNT_N8 composite exhibited superior bifunctional performance in both OER and ORR.
- ✓ These findings highlight its potential as a cost-effective and efficient
 - electrocatalyst for energy conversion applications.

REFERENCES

- Fernandes, D.M. et al. Polyoxotungstate@Carbon Nanocomposites as ORR Electrocatalysts. Langmuir, 2018, 34, 6376–6387.
- Fernandes, D.M. et al. Towards efficient ORR electrocatalysts through graphene doping. Electrochim. Acta, 2019, 319, 72–81.
- Marques, I.S. et al. Synergetic Effects of Mixed-Metal Polyoxometalates@Carbon-Based Composites for ORR and OER. Catalysts, 2022, 12, 440

ECCS2025.sciforum.net