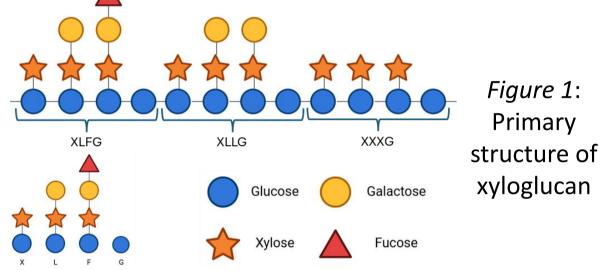


The 3rd International Electronic Conference on Catalysis Sciences

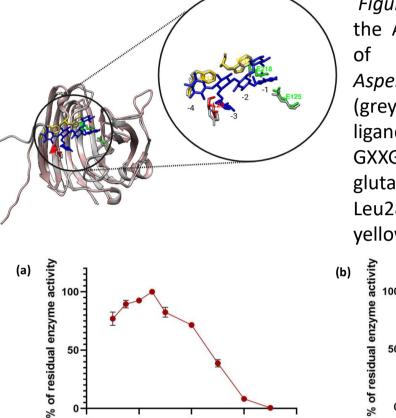
23-25 April 2025 | Online

A novel xyloglucanase from the white rot fungus *Abortiporus biennis* and its potential role as an accessory biocatalyst in the enzymatic degradation of xyloglucan-containing substrates D. P. Bakouli¹, E. Pedi¹, N. Labrou¹, E. Topakas², A. Zerva^{1*}.

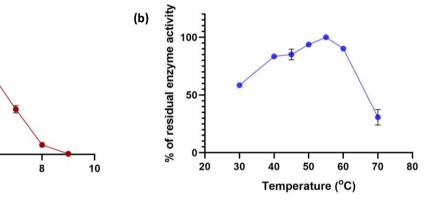

¹Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 lera Odos Street, Athens 11855, Greece

²Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece

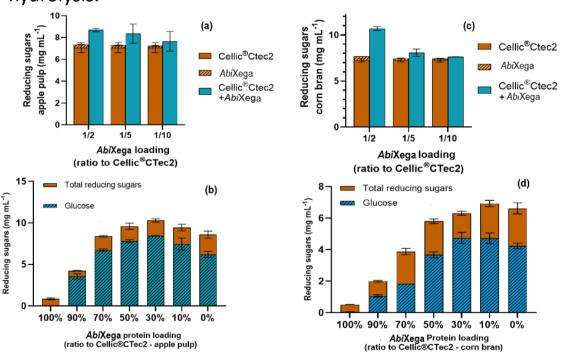
*anazer@aua.gr


INTRODUCTION & AIM

Lignocellulosic biomass is a composite material consisting of cellulose, hemicellulose, and lignin. Usually, cellulose fibrils are covered with **xyloglucan**, a complex, highly substituted plant biomass hemicellulose. Xyloglucan is present in many plant species as a seed storage polysaccharide or as a component of the primary cell wall.

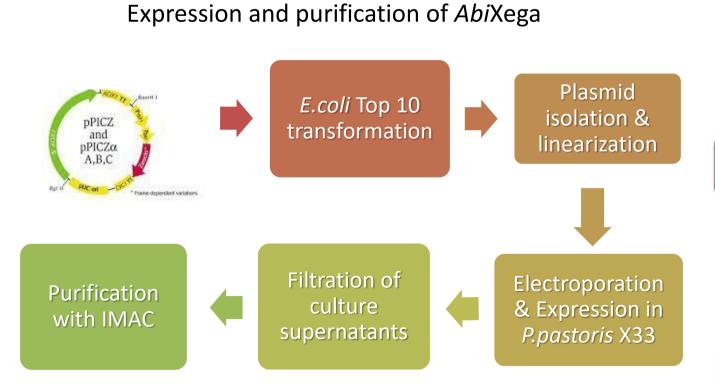

Xyloglucan requires many enzymes with complementary specificities for its complete breakdown called **xyloglucanases** (XEGs, EC 3.2.1.151). They hydrolyze backbone β -1,4-glucosidic bonds, releasing shorter oligomers. In this study, we characterized **AbiXega**, a novel XEG from the white-rot fungus *Abortiporus*

RESULTS & DISCUSSION



pН

Figure 2: Superimposition of the Alphafold model structure *Abi*Xega (pink) with Aspergillus aculeatus XEG (grey) and close-up view of the ligand binding site. (Ligand GXXG: catalytic blue, glutamates of AbiXega green, Leu28: red, Trp17 and Trp32: yellow)


Figure 3: Optimum activity conditions of *Abi*Xega. Effect of (a) pH and (b) temperature on the activity of *Abi*Xega during xyloglucan hydrolysis.

biennis, known for its lignocellulose-degrading capabilities.

The need for xyloglucan removal is evident in biorefinery applications, where platform sugars must be obtained for the valorization of cellulosic biomass, but also in the improvement of animal feed, such as corn bran and apple pulp.

METHOD

- Bioinformatics analysis
- Biochemical characterization
- Mode of action studies using DNS method to detect reducing sugars
- Synergism with commercial cellulases

Figure 4: Synergism of *Abi*Xega and cellulases in apple pulp (a, b) and corn bran (c, d) hydrolysis. Effect of *Abi*Xega protein loading on the reducing sugars release from (a) apple pulp and (c) corn bran. (b), (d) Effect of *Abi*Xega dosage on a total protein content of fixed protein loading on the production of reducing sugars and glucose by cellulases.

CONCLUSION

- Detectable activity in xyloglucan and β-glucan
- Enhances the action of cellulases in corn bran and apple pulp
- Reaction's total protein loading minimized, without loss in reducing sugars release with a high xyloglucan content

REFERENCES

- Matsuzawa, T., Watanabe, A., Shintani, T. et al. Enzymatic degradation of xyloglucans by Aspergillus species: a comparative view of this genus. Appl Microbiol Biotechnol 105, 2701–2711 (2021). https://doi.org/10.1007/s00253-021-11236-8
- Sun, P., Li, X., Dilokpimol, A., Henrissat, B., de Vries, R. P., Kabel, M. A., & Mäkelä, M. R. (2022). Fungal glycoside hydrolase family 44 xyloglucanases are restricted to the phylum Basidiomycota and show a distinct xyloglucan cleavage pattern. IScience, 25(1), 103666. https://doi.org/10.1016/J.ISCI.2021.103666

ECCS2025.sciforum.net