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Nanoblosensors as trend-setting tools for agricultural engineering diagnostics
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1. INTRODUCTION: agriculture & sustainability
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¢ Agriculture and food systems are closely linked, requiring effective farm
management for global sustainability and food security.

¢ Agricultural practices directly influence every stage of crop production,
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from germination to post-harvest.

¢ Structured management enhances farmers' yields and profitability.

. . . . . @ CsPbBr; NCs@BaS0,
¢ Recent research highlights the growing importance of nanobiosensor due

to their unique nanoscale properties.
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¢ ‘nanobiosensor can be effectively used for sensing a variety of fertilizers,
herbicides, pesticides, insecticides, pathogens, moisture, and soil pH.

This study systematically reviews current literature on nanobiosensor
integration in agriculture.

2. NANOBIOSENSOR OVERVIEW: definition & components

A nanobiosensor, typically incorporating nanomaterials (Figure 1), 1s a
nanoscale analytical device that detects biochemical substances using a
biological sensing element (bio-receptor) and a transducer. It converts
biological interactions into measurable signals that can be optically,
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Figure 22 Schematic image of the design of an electrochemical aptasensor for OTA in wheat samples.

4. REAL-WORLD APPLICATIONS OF NANOBIOSENSORS

Detection Advantage (LOD,
Target Sensor component . N ( " | Ref.
mechanism cost/time

electronically, thermally, or magnetically detected and analyzed. i . .
Y Y 8 y y Fenitrothion B WO NG | gy oty | G2 SRIENG el
composite 2011. _
Orgfu.lophosphate-based Carbon nanotubes Electrochemistry 0.145 ppb Joshi et al., 2005, s
pesticides
Methyl parathion and Carbon nanotubes : : b Viswanathan et
chlorpyrifos wrapped by ssDNA e al., 2016.
Pathogens depending on 30 min with 80%—  Cui et al., 2018a,
the VOC:s released SiggIg C-Hose 90% accuracy Cui et al., 2018b.
Urea and urease Gold NPS Colorimetry 5uM, 1.8 U/L Deng et al., 2016.
VOcs (toxic gases) Multidimensional Radlo frequency S ppm Lee et al., 2014.
» carbon nanostructures  signals
f : Au NPs functionalised : Khaledian et al.,
Ralstonia solanacearum with ssDNA Colorimetry 15 ng 2017
Chlorpyrifos Enzyme Coloured reaction 3.3 ug/L, 10 min Fuet al., 2019.
Pantoet{.stewartu subsp. Au NPs Electrochemistry 7.8 x 10° cfu/mL Zhao et al., 2014.
stewarti
Trichoderma harzianum Zn0 NPs—cbltosan Electrochemistry 1.0 x 107* mol/L Siddiquee et al,
nanocomposite 2014.
Phytoplasma aurantifolia QD Fluorescence 5 ca/uL Rad et al., 2012.
Malathion Enzyme Amperometric 0.001 pg/L gg?gg et al,
Citrus tristeza virus CdTe QD-Rd FRET 220 ng/mL ggfa?mejad S

Figure 1. Types of nanomaterials.

3. AGRICULTURALAPPLICATIONS: Pre- & post-harvest use,
soil, crop, and stress monitoring

Pesticide detection: e¢.g. Malathion, paraoxon, gliphosate using
fluorescence (Figure 2) and enzyme-based nanobiosensors.

- Pathogen detection: Viruses (e.g., hepatitis E virus), fungi (e.g.,. Botrytis
spp, Fusarium spp.), and bacteria (e.g., Xylella fastidiosa).
-« Mycotoxin detection: ZEA and Ochratoxin A (OTA) (Figure 3) in crops

like maize and wheat using quantum dot and electrochemical aptasensor
Sensors.

~ So0il & plant health monitoring: Detecting phytohormones (e.g.,
strigolactones, cytokinin, and ethylene) and stress markers (e.g., Random
amplified polymorphic DNAs (RAPDs)).

. VOC (Volatile Organic Compounds) sensing: Electronic nose (e-noses)
for disease and spoilage detection (e.g., ammonia).

/ Fertilizer & nutrient optimization: Monitor nutrient uptake and
mIinimize €Xcess Use

¢ Growth enhancement: Nanobiosensor aiding germination and growth
(e.g., in cereal crops such as wheat, in tomato or, in chili crops).
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0. LIMITATIONS AND CHALLENGES OF
NANOBIOSENSORS

0 Low selectivity in complex samples

© Lack of standardization and reproducibility
¢ Stability issues (materials and bioreceptors)
(. Toxicity and environmental concerns

. Integration difficulties with existing systems
@ High production costs

(. Regulatory hurdles

€@ Ethical and privacy concerns |

CONCLUSIONS

A )x ‘
Advances in nanoscaled materials and analytical tools have enabled a revolution in
crop disease-monitoring, with faster, more sensitive, and on-site deployability.
While there are still limitations in terms of toxicity of nanomaterials, connectivity
of data, and environmental robustness, nanobiosensors offer promising solutions
for agricultural engineering diagnostics in real-time and in situ.
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