


The 2nd International Electronic **Conference on Metals**

05-07 May 2025 | Online

Methodological Routes for Failure Analysis in Continuous Rods for Artificial Lift Systems: A Data-Driven and Damage Characteristic Approach

Andrés Fernando Quintana Rondón, Jose Miguel Jiménez Martínez, Giovanni Juzga, Jorge Hernando Panqueva Corporación para la Investigación de la Corrosión (CIC), Colombia

Failures < 1000 ft</p> Fai

Failures < 1000 ft</p>

Failures < 1000 ft	Failures <	1000 ft			
Failures > 1000 ft	ft Failures > 1000 ft				F
Coating Options proved in Oil and Gas Industry elements					Q /
Plating and Electroplating	Hot Dip Coating	Epoxy – Based Paintings	Polymer Based Coating	Ceramic Coating	F
 Electroless Nickel Hard Chromium 	 Hot Dip Galvanizing (Zn, Al, Al–Si, Zn–Al, 	 Fusion – Bonded Epoxy 	 High Density Polyethylene 	 Boronizing 	C
plating	Zn–Fe)	Good option for corrosion	 Polyketone 	Option that could be the next generation of coatings	f
Good option for	The best option for	and better resistance to	Good option for corrosion		
corrosion protection if	corrosion protection if	friction and abrasion than	and better resistance to	Superior corrosion and	
well construction and	Dogleg and sand	Hot Dip Coatings	friction and abrasion than	wear resistance than the	
sand production are not	production are not critical		Hot Dip Coatings	other coatings herein	
critical	If the new part him as a second	More versatile for high		described	
Dia dia duanta na of	If there are big removed	dogleg and sand	More versatile for high		
Big disadvantage of	portions of the coating,	production	dogleg and sand production	Need of industrial	- I
galvanic corrosion	the galvanic protection will decrease its	If agoting is removed	If anoting is remayed there	development to make it	
when the coating is removed		If coating is removed	If coating is removed there	cheaper and generate	
Terrioved	effectivity	there is no galvanic effect	is no galvanic effect	joining processes	

CONCLUSION

Friction generates a shiny surface or multiple parallel lines in axial or circumferential direction. Corrosion generates continuous bands or localized pitting, and abrasion is seen as small indentations uniformly distributed / or ringed – like morphology. These damage mechanisms are enough to initiate fatigue failures

For both ALS friction, corrosion and abrasion are the main failure causes and the best option to mitigate this damage mechanisms is the use of industrial coatings.

Epoxy – Based paintings and polymer – based coatings are the most balanced options nowadays to mitigate friction, abrasion and corrosion. Ceramic – based coatings could be the next generation but need more investigation and technological development to be feasible in costs.

REFERENCES

- Hamdy Makhlouf, A. S., & Aliofkhazraei, M. (2016). Handbook of Materials Failure Analysis with Case Studies from the Oil and Gas Industry. Elsevier.
- Nguyen, T. (2020). Artificial Lift Methods: Design, Practices, and Applications. Springer.
- Takacs, G. (2015). Sucker-Rod Pumping Handbook Production Engineering Fundamentals and Long-Stroke Rod * Pumping. Elsevier.
- Tillis, W., Dillon, J., & Desch, P. (2004). Nalco: Corrosion in the Petroleum Industry. Nalco.

https://sciforum.net/event/IECME2025