

The 2nd International Electronic Conference on Metals

05-07 May 2025 | Online

The Directional Solidification of Al-Zn Alloys as a function of the Level of **Convective Heat Transfer**

Darío Tirado Montoya, Reynel Brito Beltrán, Claudia Marcela Méndez, Natalia Silvina Zadorozne, **Alicia Esther Ares**

Instituto de Materiales de Misiones - IMAM (CONICET-UNaM). Félix de Azara 1552 (3300) Posadas, Argentina.

INTRODUCTION & AIM

In this study, an analysis of the directional solidification of Al-Zn alloys using a Brigdman-type rotary directional solidification device is presented. For this purpose, the device can be rotated at three tilt angles (0°, 90°, and 180°). Directional solidification tests were performed with Al and Zn (commercial grade) and with Al-5%Zn and Al-10%Zn alloys (weight percent). The aim is to analyze how the furnace inclination (which generates different levels of convective heat transfer in the solidifying specimen) and the alloy composition influence the cooling rate of the metallic solid, the thermal gradients, and the size of the macrostructure and microstructure present. It has been observed that by varying the furnace inclination angles, for the same composition, the cooling rate tends to decrease; it is also important to highlight that the minimum temperature gradients coincide with the position of the CET. For commercial purity Al, average cooling rates of 2.21 °C/s at 90°, 2.05 °C/s at 45°, and 1.98 °C/s at 0° were obtained for each of the tests. For the Al-10wt. %Zn alloy, average cooling rates of 2.43 °C/s at 90°, 2.14 °C/s at 45°, and 1.99 °C/s at 0° are obtained, with a clear decrease in the cooling rate as the furnace tilt angle is varied. Similarly, when the CET occurs, the critical gradient value is -0.5 °C/cm for Al, 0.1 °C/cm for Zn, 1.4 °C/cm for Al-5wt. %Zn, and -1.2 °C/cm for Al-10wt. %Zn. On the other hand, when analyzing the behavior of Zn, it can be highlighted that the cooling rate values decrease significantly when compared with Al (both commercial grades) and with the Al-5wt. %Zn and Al-10wt. %Zn alloys. These data indicate that the alloy composition and the inclination of the solidification device influence the cooling rate and the thermal gradients.

RESULTS & DISCUSSION

MDPI

1.72

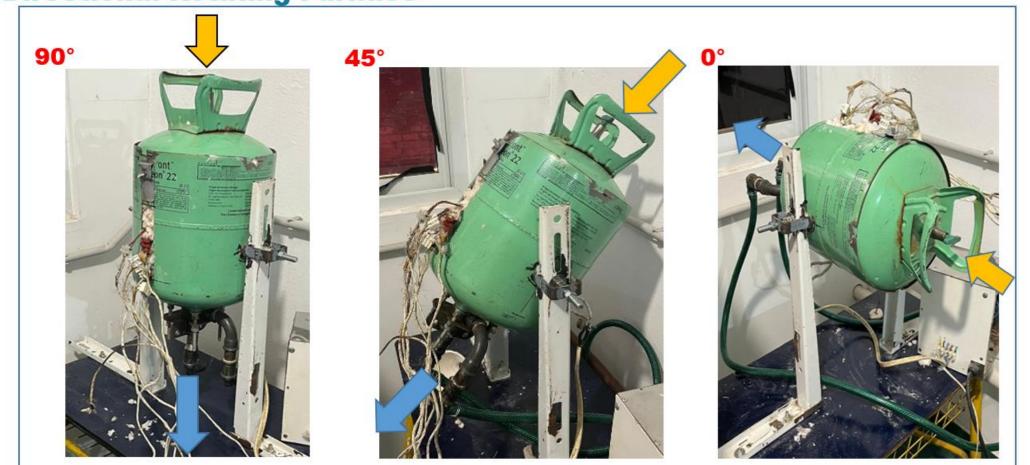
1.92

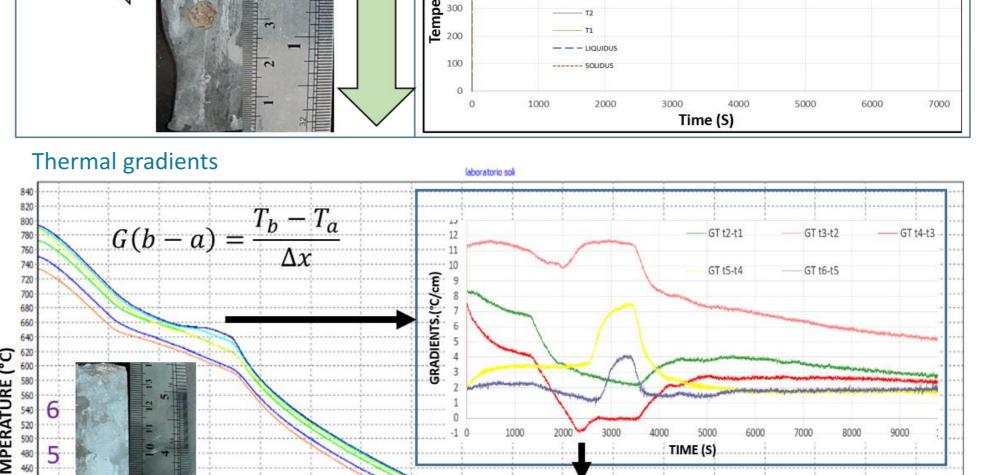
2.49

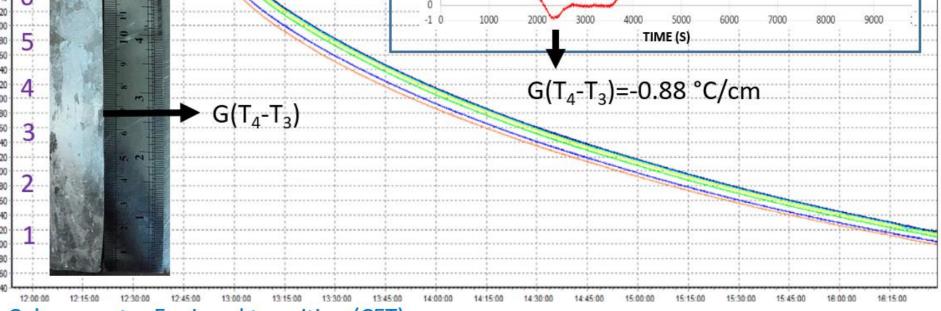
2.03

3.03 3.81

3.53

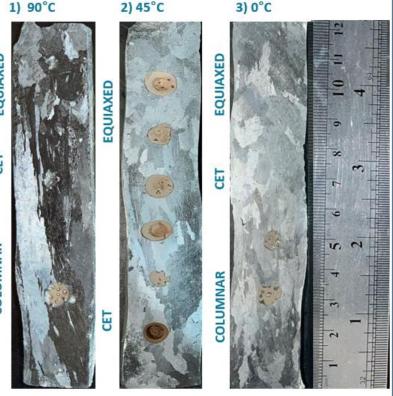

Recording of temperature versus time data Column Column EQUIAXED CET CET COLUMNAR


METHOD


• The process of shaping, preparing, and firing clay to create ceramic products

1) Clay	3) Baking in furnace	5) Ceramic dimensions		
		Molds a. Internal diameter = 2.5cm Thickness = 0.5cm Thickness = 0.5cm Height = 12 cm Height = 12 cm Height = 15 cm c. Internal diameter = 2.5cm Thickness = 0.5cm Height = 17 cm Center of furnace d. Internal diameter = 5 cm Thickness = 2 cm		
2) Molding of clay elements	4) Ceramics molds	Height =19.5 cm		
	a) b) c) d) i i i i i i i i i i i i i i i i i i	19.5 cm 19.5 cm 19.5 cm 10 cm 6 cm 6 cm 4 cm 2 cm		

Directional Rotating Furnace



Columnar- to -Equiaxed transition (CET)

 $G_T(T_4-T_3) = -1.83^{\circ}C/cm$ G_T at CET

Type of grains	Position (cm)	Thermocou ple	Liquidus (°C)	Solidus (°C)	Liquidus cooling rate (°C/min)	Solidus cooling rate (°C/min)
Columnar	8	T ₄	668.2	620.2	4.93	2.29
CET	10	T ₅	668.2	620.2	4.30	2.69
Equiaxed	12	T ₆	668.2	620.2	4.16	2.98
$T(T_6-T_5)$	= 0.13°	C/cm		G _⊤ a	t CET	
Position: 4	15°					
Type of grains	Position (cm)	Thermoco uple	Liquidus (°C)	Solidus (°C)	Liquidus cooling rate (°C/min)	Solidus cooling rate (°C/min)
Columnar	4	T3	665.9	614.1	3.89	2.03
CET	10	T ₅	665.9	614.1	3.14	2.08
Equiaxed	12	T ₆	665.9	614.1	3.10	2.10
T(T ₆ -T ₅) Position: 0		°C/cm		G_T at	CET	
Type of grains	Position (cm)	Thermoco uple	Liquidus (°C)	Solidus (°C)	Liquidus cooling rate (°C/min)	Solidus cooling rate (°C/min)
Columnar	6	T3	664.1	617.1	3.91	1.47
CET	8	T ₄	664.1	617.1	3.44	1.36
Equipyod	12	-	664.1	617.1	2.26	1 37

Sample entry site

Heat extraction direction

K-type thermocouple calibration

Experimental device

CONCLUSION

- For commercial purity Al, average cooling rates of 2.21 °C/s at 90°, 2.05 °C/s at 45°, and 1.98 °C/s at 0° were obtained for each of the tests.
- For the Al-10wt. %Zn alloy, average cooling rates of 2.43 °C/s at 90°, 2.14 °C/s at 45°, and 1.99 °C/s at 0° are obtained, with a clear decrease in the cooling rate as the furnace tilt angle is varied.
- Similarly, when the CET occurs, the critical gradient value is -0.5 °C/cm for Al, 0.1 °C/cm for Zn, 1.4 °C/cm for Al-5wt. %Zn, and -1.2 °C/cm for Al-10wt. %Zn.
- > On the other hand, when analyzing the behavior of Zn, it can be highlighted that the cooling rate values decrease significantly when compared with Al (both commercial grades) and with the Al-5wt. %Zn and Al-10wt. %Zn alloys.
- These data indicate that the alloy composition and the inclination of the solidification device influence the cooling rate and the thermal gradients.

FUTURE WORK / REFERENCES

- Loja, J. L. L., Zulca, P. A. M., & Morales, J. E. T. (2020). Características del proceso de conformado en láminas de aluminio de la serie 6000. Polo del Conocimiento: Revista científico-profesional, 5(9), 3-21.
- Krajewski, W. K., Buraś, J., Krajewski, P. K., Greer, A. L., Faerber, K., & Schumacher, P. (2015). New developments of Al-Zn cast alloys. Materials Today: Proceedings, 2(10), 4978-4983.
- Ares, A. E., & Gassa, L. M. (2012). Corrosion susceptibility of Zn-AI alloys with different grains and dendritic microstructures in NaCI solutions. Corrosion Science, 59, 290-306.
- Zhang, X. R., Li, A., Li, X. Z., Zhang, D. D., Bi, G. L., Fang, D. Q., ... & Sun, J. (2024). Fully equiaxed grain structure and isotropic mechanical properties in wire arc additive manufactured Mg-AI-RE alloy. Journal of Materials Research and Technology, 31, 3998-4011.

https://sciforum.net/event/IECME2025