IECME Conference

The 2nd International Electronic Conference on Metals

05-07 May 2025 | Online

Modified Sol–Gel Synthesis of SiO₂ Nanoparticles

Omar Mahmoud¹ omadr07@gmail.com, M'Hamed Guezzoul³, Abdelkader Nebatti Chergui⁴, Moumene Tagiyeddine², El Habib Belarbi², Hafida Miloudi¹, Djamila Bouazza¹.

¹ Laboratory of Chemistry of Materials, University of Oran 1, Algeria

² Laboratory of Synthesis and Catalysis, University of Tiaret, Algeria

³ Laboratory of Materials (LABMAT), National Polytechnic School of Oran Maurice Audin (ENPO-MA), Algeria

⁴ Laboratory of Materials Sciences and Applications (LSMA), University of Ain Temouchent Belhadj Bouchaib, Faculty of Sciences and Technology, Algeria

Figure 1: Progressive Development of Carbon-Modified SiO₂ Nanoparticles via Anhydrous Sol-Gel Synthesis and Oxalic Acid Catalysis for Advanced Applications

METHOD

Fig. 6: UPS spectrum of SiO₂-NPs (He I, hv = 21.2 eV); red lines show SE cutoff for work function (WF) and VBM region for EF-EVBM determination.

Fig. 7: XPS of SiO₂-NPs: (a) wide scan with atomic %, (b-d) Si 2p, O 1s, C 1s with Gaussian fits.

Fig. 7. (a) UV-Vis absorption of SiO₂-NPs (max at 266 nm); (b) Tauc plot for bandgap energy.

Table 1. PL emission peaks and corresponding defect states in SiO₂-NPs.

Emission Peak (eV)	Color	Origin
3.65	T T14	Oxygen-deficient centers (ODC I), Singlet-

FIGURE 2: Synthesis and Characterization of Carbon-Modified SiO₂ Nanoparticles

RESULTS & DISCUSSION

SiO₂-NPs

10

20

30

40

2 Theta (deg)

Fig. 4: XRD pattern of SiO₂ nanoparticles.

23.53

10 15 20 25

50

40

50

2 Theta (deg)

60

30 35 40 45

70

q_e(OM)

Freundlich

Langmuir

60

70

Fig. 3. (a) 2D/3D AFM topography and phase images of SiO₂ NPs (10×10 μm scan; Ra: roughness, φa: phase contrast, D: grain size). (b) Height histogram

Fig. 5: Freundlich isotherm for Methylene Blue (MB); Langmuir isotherm for Methyl Orange (MO).

Singlet transition
Oxygen vacancy related states in SiO_2
olet Oxygen deficient centers ODC (II) (≡Si:Si≡)
lue Self-Trapped Excitons (STEs)
Dioxasilirane group (DOSG),
reen SiC-related centers
Silanone groups (Si=O double-bond states)
The nonbridging oxygen hole centers (NBOHC) \equiv Si-O·
Hydrogen-related defects (the OH group)
The quantum confinement effect
Led Defect luminescence fromSilanol groups (Si-OH)
infrared Si nanocluster

CONCLUSION

Table 2. Summary of Key Structural, Optical, and Functional Properties of SiO₂-NPs

Parameter	Summary
Crystallite Size	~7.7 nm (short-range order in amorphous matrix)
Synthesis	Sol-gel with oxalic acid, 400°C, low energy
Defects	Oxygen vacancies, Si–O–C bonds, NBOHCs
Surface	Hydroxylated, ~80 nm grains, roughness Sa ~ 11.5 nm
Optical	Bandgap 3.85 eV; PL emissions 1.48–3.65 eV (defects)
Adsorption	MB: Freundlich (R ² = 0.975); MO: Langmuir (R ² = 0.983)
Photocatalysis	Defect-enhanced charge separation, visible-light active
Applications	Wastewater treatment, optoelectronics, sensing

Conflict of Interest: The authors declare no conflicts of interest.

Acknowledgments: The authors acknowledge the Laboratory of Chemistry of Materials, University of Oran 1, Algeria; the Laboratory of Synthesis and Catalysis, University of Tiaret, Algeria; and the Laboratory of Materials (LABMAT), National Polytechnic School of Oran Maurice Audin (ENPO-MA), for their support in this work.

Copyright: The authors retain the copyright to this work but grant MDPI the non-exclusive right to publish the abstract online on the Sciforum.net platform.

https://sciforum.net/event/IECME2025