

PRISTINE AND Pt-MODIFIED TiO₂ DRIVEN ORGANIC COMPOUNDS PHOTODEGRADATION

Alexandra ILIE¹, Crina ANASTASESCU¹, Luminita PREDOANA¹, Adriana RUSU¹, Silviu PREDA¹,

Daniela C. CULITA¹, Veronica BRATAN¹, Valentin Adrian MARALOIU², Valentin S. TEODORESCU^{2,3}, Ioan BALINT¹ and Maria ZAHARESCU¹

¹, Ilie Murgulescu" Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, 6th District, Romania

² National Institute of Materials Physics, 405 bis Atomistilor Street, 077125 Magurele-Ilfov, Romania

³Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania

INTRODUCTION & AIM

METHOD

Photocatalysts powders with different compositions, sizes and dimensional distributions were prepared by sol-gel method.

The purpose of this work was to prepare, by the sol-gel method, TiO₂ and Pt-modified TiO₂ with photocatalytic activity for ethanol degradation in gaseous phase under simulated solar light irradiation.

The powders were obtained by sol-gel method and noted: TiO₂ and TiO₂-Pt (doped by post-synthesis impregnation). The methods used for characterization were infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray fluorescence(XRF), UV-Vis and BET-specific surface area determination. The products of oxidative degradation process were analyzed by gasphase chromatography (GC-TCD and GC-FID).

SYNTHESIS

RESULTS & DISCUSSION

Sample	Composition	Values (Mass %)	Line
TiO ₂	Ti	59.25	Ti-KA
	0	39.57	O-KA
	Traces	1.18	

 \square TiO₂ powder were obtained using the sol-gel method, and doping with Pt by post-synthesis impregnation.

• The structural and morphological characterizations of the obtained photoactive materials were correlated with their photocatalytic activity.

After 3 hours of solar simulated light irradiation, TiO₂-Pt powder achieved the highest conversion of ethanol photodegradation (64.82%).

• Addition of Pt improves the catalytic activity by: co-catalytic effect, decrease of bandgap, better light absorption and separation of charges.

IECME-The 2nd International Electronic Conference on Metals, 05-07 May 2025