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Abstract: The cup anemometer has been used widely by the wind energy industry since its 

early beginning, covering two fundamental aspects: wind mill performance control and 

wind energy production forecast. Furthermore, despite modern technological advances 

such as LIDAR and SODAR, the cup anemometer remains clearly the most used 

instrument by the wind energy industry. Together with the major advantages of this 

instrument (precision, robustness), some issues must be taken into account by scientists and 

researchers when using it. Overspeeding, interaction with stream wakes due to allocation 

on masts and wind-mills, loss of performance due to wear and tear, change of performance 

due to different climatic conditions, checking of the maintenance status and recalibration, 

etc. In the present work a review of the research campaigns carried out at the IDR/UPM 

Institute to analyze cup anemometer performance is included. Several aspects of this 

instrument are examined: the calibration process, the loss of performances due to aging and 

wear and tear, the effect of changes of air density, the rotor aerodynamics, and the 

harmonic terms contained in the anemometer output signal and their possible relation to the 

anemometer performances. 
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1. Introduction 

At present, the use of wind speed anemometers (cup, propeller or sonic anemometers) is very 

common, their applications having spread from sectors such as meteorology or wind energy to others 

where the effect of the wind should be taken into account (moving bridges in civil engineering, big 

cranes, etc.). Nevertheless, the wind energy industry still can be considered as the biggest consumer of 

anemometers all over the world.  Leaving aside the importance of having the most accurate instruments 

(as the wind power is proportional to the third power of the wind speed ), the wind energy sector is 

extremely concerned with two aspects that, despite technological advances such as LIDAR and 

SODAR, require the use of anemometers: wind energy production forecast on the field, and wind 

turbine performance control. Within the past decades the wind energy sector has been openly 

supported by governments (Germany, Denmark, Spain…), concerned about clean energies and a 

reduction of their dependence on fossil fuels. In addition, new strong players in this industry like 

China, U.S.A., Brazil or India are now being very active, with large figures in terms of installed wind 

power and growing rates (see Figure 1). According to these facts it seems reasonable to assume that 

the mentioned massive demand of anemometers from this sector will be maintained in the incoming 

years, if not increased. 

 

Figure 1. Installed wind power per country from 2005 to 2013. The graph includes data from some 

of the biggest producers in the world. 

 
Among the different instruments devoted to measure the wind speed, the cup anemometer remains 

today the most used in the wind energy sector, as it is inexpensive when compared to other devices 

(e.g., sonic anemometers), shows linear response in the normal wind speed range (according to 

MEASNET procedures, anemometer calibration wind speed ranges between 4 m s1 and 16 m s1), and 

is capable to operate in quite extreme weather conditions. The behavior of this meteorological 
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instrument has been widely studied along the twentieth century. Early studies focused on the optimal 

number of cups and arm length, cup aerodynamics, frequency recording system design, and errors due 

to fluctuating winds. Following those initial efforts, researchers focused on cup anemometer response 

in turbulent flows, as the accuracy of wind speed measurements became increasingly importa nt. In 

addition, the importance of accuracy in wind speed measurements and the impracticality of constant 

recalibrations to maintain anemometer performance led researchers to study other aspects related to 

cup anemometer calibration. These include the impact of environmental (climatic) conditions, 

anemometer aging, the possibility of field calibration, the effects of wind stream non-uniformities, 

stream blockage and anemometer mounting arrangement on the calibration results, and uncertainties 

during the calibration processes. Finally, recent efforts have been made to classify the different 

anemometers available on the market, and to compare their performance as a function of their shape. 

 

Figure 2. Left: Results from two calibrations performed at the IDR/UPM Institute, on the same cup 

anemometer (Thies Clima 4.3350) following two different procedures, AC and AD. AC calibrations 

follow strictly MEASNET procedure (wind speeds ranging from 4 m s1 to 16 m s1, and 13 

measurement points are taken), whereas AD calibrations are carried out over a broader wind speed 

range (from 4 m s1 to 23 m s1) and less measurement points are taken (9 instead of 13). The 

transfer function resulting from the linear fitting to AC calibration data has been included in the 

graph, together with the coefficient of determination, R2. Right: Cup anemometer equipped with a 

prototype rotor during calibration procedure at the S4 wind tunnel at the IDR/UPM Institute. 

 

2. The Calibration Process 

If, as said, the cup anemometer shows a linear behavior, then, the transfer function which relates the 

wind speed, V, to the output frequency of the anemometer, f, can obviously be expressed by a linear 

equation: 

A· BV f  , (1)  

where A (slope) and B (offset) are calibration coefficients  defined by means of a calibration process in 

a wind tunnel (see Figure 2). Looking for a expression with a clearer physical meaning, t he transfer 

V = 0.04759f + 0.26993

R2 = 0.99998
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function can be rewritten in terms of the anemometer’s rotation frequency, fr, instead of the output 

frequency, f: 

A · Br rV f  , (2)  

where Ar is the result of multiplying calibration constant A by the number of pulses per revolution 

given by the anemometer, Np. The number of pulses is different depending on the anemometer’s inner 

system for translating the rotation into electric pulses. Magnet-based systems give 1 to 3 pulses per 

revolution, whereas optoelectronics-based systems normally give higher pulse rates per revolution, 

from 6 to 44. Finally, going back to the linearity of the cup anemometer performance on the 

aforementioned wind speed range, some authors claim that a non- linear expression should be used as 

the anemometer’s transfer function instead of a linear one, especially at low wind speeds. 

Nevertheless, it should also be said that the linear expression is used as, in normal working conditions, 

it is accurate enough and recommended in standard calibration processes. In Table 1 some average 

values of the calibration coefficients corresponding to commercial anemometers calibrated at the 

IDR/UPM Institute are included. 

 

3. Analytical Models to Study Cup Anemometer Performance 

To analyze the behavior of cup anemometer, analytical models have been proposed by other authors 

in the past. These models are developed from the following expression: 

f

d

d
AI Q Q

t

  , (3)  

where I is the moment of inertia of the rotor, QA is the aerodynamic torque, and Qf is the frictional 

torque that depends on the air temperature, T, and the rotation speed,  (Qf = B0(T) + B1(T) + 

B2(T), where coefficients B0, B1, and B2 are negative). The frictional torque, Qf, can be neglected as 

it is normally very small in comparison to the aerodynamic torque. The aerodynamic torque, QA, can 

be derived from the aerodynamic forces on the rotor cups, which are normally measured in a wind 

tunnel in “static” configuration, that is, measuring the forces on an isolated and fixed cup immersed in 

a constant wind speed air flow and without considering any rotational speed. The aerodynamic torque 

due to one single cup is expressed as a function of the aerodynamic normal-to-the-cup force coefficient 

measured in a wind tunnel, cN, the wind speed, V, the rotation speed, , the cup radius, Rc, the cup 

center rotation radius, Rrc, and the air density, . Analytical models have proven to be a useful tool to 

study the cup anemometers performance, even in not fully functional conditions. Besides, the 

relationship between the performance of a cup anemometer and its shape has also been experimentally 

studied, mainly through measurements of the aerodynamic normal-force coefficients on the cups, cN, 

as Breevort & Joyner did in the past. Using those cup force coefficients as a function of the wind 

angle, some authors such as Schrenk, Wyngaard, Ramachandran, and Kondo derived different 

analytical models to study cup anemometer behavior. Both analytica l and experimental research on 

cup anemometer behavior has shown the correlation between anemometer transfer functions and cup 

center rotation radius, Rrc. However, some differences have also been highlighted between the results 

obtained using the two methods, see Figure 3. 
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Table 1. Mean and standard deviation values of calibration coefficients, A and B (1), of different 

commercial anemometers calibrated using MEASNET procedure at the IDR/UPM Institute. The 

coefficient of determination, R2, related to the calibration linear fittings have been also included in the 

table. The values refer to new, not used, anemometers. 

 

Anemometer 
Calibrations 

averaged 

A 

mean 

A 

[x10
4
] 

B 

mean 

B 

[x10
2
] 

R
2
 

mean 

RISØ P2546A 83 0.627 33.17 0.179 1.77 0.99999 

Thies 4.3350 874 0.0483 1.93 0.248 2.47 0.99999 

Thies 4.3351 115 0.0460 1.44 0.267 2.71 0.99999 

Climatronics 100075 35 0.0473 3.06 0.208 2.85 0.99997 

Vector Inst. A100 L2 189 0.0505 3.27 0.184 2.86 0.99998 

Ornytion 107 77 0.624 47.01 0.215 2.48 0.99998 

Vaisala WAA 151 4 0.0995 3.88 0.305 3.71 0.99998 

Vaisala WAA 252 9 0.104 10.13 0.213 2.33 0.99998 

 

Figure 3. Cup anemometer factor, K (defined as K = U/2frRrc, where U is the wind speed, fr is 

the anemometer’s rotation frequency, and Rrc is the cups center rotation radius), as a function of the 

ratio between the cups radius, Rc, and the cups center rotation radius, Rrc (see geometry sketch on the 

right side). The experimental results (white circles) measured with a Climatronics 100075 ane mometer 

equipped with conical cups rotors. These rotors were built with the same cup radius, Rc = 30 mm, and 

varying the cups center rotation radius, Rrc. The linear fitting to these testing results has been added as 

a dashed line. The results from several commercial anemometers have been added to the graph, 

together with the analytical result calculated for the corresponding conical cups. 

4. Influence of Air Density, Ageing, and Damage Condition on the Cup Anemometer 

Performance 

The effect of density was analyzed in a previous campaign. The effect of density changes in relation 

to the calibration transfer function constants A and B were observed. Large series of calibrations were 
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analyzed and, as a result, the general trend obtained with calibrations performed on different 

anemometers of the same type, was found to be quite similar to the behavior shown by a single 

anemometer (estimated by multiple calibrations). In addition, the ageing was also studied in a specific 

research carried out at the IDR/UPM Institute. Two different analyses were done, the first concerns 

three specific cup anemometers used at the IDR/UPM calibration laboratory for internal procedures, 

the second one is related to some cup anemometers that were sent several times to the IDR/UPM, to be 

calibrated in each occasion after a period in service. The results showed a different degradation pattern 

for different cup anemometers. Besides, a greater scattering, regarding the loss of performance level, 

were showed within the first 300 days in service than the one showed in the period between 300 and 

600 days. This result seems to indicate a greater level of degradation of the cup anemometer in the first 

year of service. The problem of the cup anemometer maintenance and condition monitoring has been 

recently studied using Fourier analysis of the output signal. The results are very promising as 

degradation of the rotor geometry has been observed using this analysis, the experimental data being 

also correlated with analytical models. 

 

4. Conclusions 

The cup anemometer is at present the best option for wind speed measurements regarding the 

specific applications for the wind energy industry [1] (e.g., wind energy production analysis at specific 

locations, or wind mill performance control). 

Research carried out in the past years at the IDR/UPM Institute indicate that there is still 

possibilities to optimize the aerodynamics of this mechanical sensor [2–4] and, even more promising 

for the industry, a new way to monitor the sensor status based on the anemometer output signal 

processing is being developed [3]. 
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