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Abstract— There are many enantioselective reactions of organolithium to imines described in a very different conditions. In 
this work, we constructed from experimental outcomes large Complex Network, which may be used to perform datamining 
and quantitatively describe changes in reaction variables that determine the enantiomeric excess and configuration of the 
stereogenic centre formed in product. 
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1. Introduction 

The asymmetric 1,2-addition of organometallic reagents to imines provides ready access to enantiomerically enriched 

amines with a stereogenic centre at the α-position, an important structural feature in many biologically active compounds.
1
 

In this kind of reactions are implicated many variables, substrates, organolithium reagents, chiral ligands, products and 

variables of reaction condition for instance. Therefore it exist a huge field of possible reactions to investigate. 

In this sense, it is of the major interest the search of rational approaches to predict and describe the high complexity of 

information generated by the changes on enantioselectivity for large databases of these kind of pairs of reactions. QSRR 

models may be used to predict effect of changes in reaction variables over enantioselectivity but we also need tools to 

describe the huge amount of information generated. This sort of problem may be investigated using Complex Networks 

(CNs) to regroup reactions with inverse results in which the enantioneric excess and configuration are changed from R to S. 

Our group has introduced elsewhere a Markov Chain Model (MCM) method named MARkov CHains Invariants for 

Network SImulation and Design (MARCH-INSIDE). The MARCH-INSIDE approach makes use of MCM to calculate the 

average values of different molecular physicochemical properties in chemical structures.
2
 We propose herein, for the first 

time, a QSRR model able to predict the difference in enantiomeric excess for R-product between two pair of reactions 

(∆ee(R)%), which achieve to similar/dissimilar enatioselectivity after modification of reaction variables. This QSRR may 
predict the configuration of the new stereogenic centre formed in the synthesis of amines taking into consideration similar 

reaction pairs in which the enantiomeric excess increases or reduces. 

2. Results and Discussion 

We used Forward-stepwise to investigate which variables more strongly influence the change on enantioselectivity and 

construct the MLR-QSRR equation model. The more important variables were the differences between the initial and final 

reaction for: product partition coefficient (∆Pp), chiral ligands hardness (∆Hl), solvent dipolar moment (∆Ds), reaction time 
(∆tr), reaction temperature (∆Tr), addition temperature (∆Ta), average enantiomeric excess for reactions using same 
procedure (∆Ae), substrate molar refractivity (∆Mi), and steric constant (∆So) and hardness of organolithium compounds 
(∆Po) respectively. Using these variables the best model found was: 
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where, n is the number of cases (reaction pairs) used to train the model, R
2
 and R

2
adjusted 

 
are the train and adjusted square 

regression coefficients, F is Fisher ratio, and p the level of error. All these reactions were previously reported in the 

literature.
3
 

Molecular CNs are used to study large data bases and/or complex systems.
4
 In order to recall the capacity of the MLR-QSRR 

to predict new CNs we selected the same data employed for training and validating the QSRR model. So we constructed first 

a new ECNobs using the observed values considering the experimental data. Next, we predicted the ECNpred with the QSRR 

model and last we compared both ECNs. In our CNs we explored the threshold values in a range from -98.31 to -175, 

obtaining an average values of output node degree from 89.3 to 103.4 respectively. Finally, a cut off = -175 was selected to 

obtain average node degree equal to 103.4; which guarantee that the number of disconnected reactions is 0. Next, we used the 

MLR-QSRR equation to predict the enantiomeric excess and configuration of some amines. The same as before, we explored 

the threshold values in a range from -98.31 to -175, obtaining average values of output node degree from 77 to 89.4 

respectively, a cut-off = -175, which leads to an average output node degree of 89.4, was selected being 0 the number of 

disconnected reactions. Additionally, with this threshold, the number of edges is 23586 for the observed network and 20374 

for the predicted network. In Figure 1 we illustrate the complex relationships between ECN drawing coincident edges for 

both ECNobs and ECNpred. In order to compare the ECNobs and ECNpred, we used the sensitivity, specificity and accuracy a 

Chi-Square test; the obtained value for the p < 0.00001 error level was Chi-square = 293.364. 

 

 

 
Figure 1. Graphical view of the observed vs. predicted ECNs. 

 

3. Conclusion 

Using the MARCH-INSIDE approach is possible to seek a MLR-QSRR classifier to predict the probability of chirality 

inversion of reactions; which occur by adition of organolithium reagents to imines in presence of chiral ligands. This MLR-

QSRR was also demonstrated to be an efficient tool for computational construction of Enantioselectivity Complex Networks 

that accurately reproduces the network based on experimental findings.  
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