The 5th International Online Conference on Nanomaterials

22-24 September 2025 | Online

Strain and Defect – Engineered Modulation of Structural, Optical, and Magnetic Properties in Ho³⁺ Doped β-Ga₂O₃ Nanoparticles

> Abhishek Sharma¹, Vir Singh Rangra¹ ¹Himachal Pradesh University Shimla India -171005

INTRODUCTION & AIM

- \checkmark β-Ga₂O₃ is an ultra-wide bandgap semiconductor (~4.8) eV) known for its exceptional thermal and chemical stability.
- ✓ To date, the effects of holmium (Ho) doping in betagallium oxide (β -Ga₂O₃) have not yet been investigated.
- \checkmark Doping with Ho³⁺- ions, which possess a larger ionic radius and rich 4f electronic states, introduces controlled lattice strain and defect states, enabling the modulation of structural, optical, and magnetic properties.
- ✓ This defect-engineering strategy tailors material functionalities, making Ho³⁺-doped β -Ga₂O₃ promising multifunctional material.

RESULTS & DISCUSSION

Fig.1 XRD spectra of Holmium doped samples at 1, 2 and 3 wt. %

Fig2. Shifts in XRD peaks

METHOD

β-Ga₂O₃ at 900°C for 3 hours Table 1: Structural parameters of Holmium doped β–Ga₂O₃ samples

Samples	β – GOH-1	β – GOH – 2	β – GOH – 3
2θ (deg)	31.71	31.75	31.75
FWHM β (deg)	0.3824	0.3038	0.2955
W-H Size DW-H	9.65	11.49	11.73
DW-H Dislocation Density $(\delta \times 10^{-3} \text{ (nm}^{-2})$	10.738	7.574	7.267
Strain $(\epsilon \times 10^{-3})$	-2.94	2.52	-2.41

β-GOH-3 0.007 0.0057 0.0038 0.001 β-GOH-2 95 0.0076 0.0057 0.0038 0.001 ★ β-GOH-1 0.00840.0063 0.0042 0.002 2.2 2.4 3.2 3.4 3.6 2.6 2.8 4 sinθ

Fig.3 Williamson-Hall (W-H) plot

Fig.5 Holmium doped samples at 1% wt.% concentration

Fig. 6 FTIR Spectra

- ✓ The crystallite size exhibits a non-uniform trend, initially decreasing at 1 % Ho doping and then partially recovering at higher concentrations.
- Williamson-Hall analysis reveals the presence of compressive lattice strain, which progressively relaxes with increasing Ho concentration.
- ✓ UV–Vis absorption analysis shows a systematic blue shift in the absorption edge, indicating an increase in the optical bandgap energy upon Ho incorporation.
- ✓ Photoluminescence spectra display pronounced quenching of emission intensity, suggesting the activation of non-radiative recombination channels with increasing Ho content.
- ✓ Magnetic measurements show that pure β-Ga₂O₃ exhibits diamagnetic behavior, whereas Ho-doped samples display progressively stronger paramagnetic responses with increasing Ho concentration, without showing any magnetic hysteresis.

Fig8. Absorbance Spectra of pure and **Holmium doped samples**

Fig9. Reflectance Spectra

ACKNOWLEDGEMENT

Abhishek Sharma gratefully acknowledges the experimental facilities provided by Himachal Pradesh University and the financial support from DST-INSPIRE (Govt. of India) through a Junior Research Fellowship (Grant No. DST/INSPIRE Fellowship/2021/IF210391).

FUTURE WORK / REFERENCES

For future study, we can investigate the upconversion in our holmium-doped sample by exciting it with a near-infrared laser and analyzing the subsequent higher-energy visible light emission.

☐ Sharma, Abhishek, and Vir Singh Rangra. "Effect of gadolinium doping on the structural, morphological, vibrational, and optical properties of β-Ga₂O₃: a solid-state combustion approach." Ceramics International 51.13 (2025): 17583-17592.

Fig9. PL Spectra of pure and Holmium doped samples

Fig10. Magnetic Hysteresis(M-H) loop of pure and Holmium doped samples