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Abstract: In most related work with Pedestrian navigation, indirect filtering approach is 

used based on linear error based Kalman Filter (KF). In this research, it is proposed to 

outperform this approach by the use of direct filtering approach. Based on only MEMS 

IMU, we propose the use of modern algorithms developed in the last decade; Sigma Point 

Kalman Filters (SPKF), and recently developed Cubature Kalman Filter (CKF) as a 

superior alternative to all previous filters. The CKF improves the mean and covariance 

propagation as compared with EKF and previous SPKF (UKF, CDKF). Although the CKF 

provides a better estimate of the orientation, velocity and position with Zero velocity 

UPdaTes (ZUPT) and Zero Angular Rate UpdaTes (ZARUT) measurements. Cubature 

Information Filter has been also implemented for sake of completeness. 
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1. Introduction 

The problem of Pedestrian Navigation based on direct Kalman filtering recently deserved the attention 

of the navigation community, although more studies are necessary to master this application. Inertial 

sensors Microelectromechanical systems (MEMS) combined with aiding information is an accurate 

and efficient integrated system for navigation purposes under Gaussian conditions [2][3-4].  In our 

case, we consider that we use only IMU mounted on foot in order to determine the position, velocity 

and attitude of the body. A solution based on Zero Velocity UPdaTes ZUPT and Zero UPdaTes 

ZARUT has been developed in the last five years, which provides an aiding information to correct 
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inertial drifts and bias of gyroscopes and accelerometers and estimate person during walk.  As a 

potential application, many attentions have been devoted to blind peoples navigation in urban 

environment and such development could be a potential solution for this complex problem. In this 

paper, the proposed solution implements an Information filter variant of CKF algorithm [1].  

  

Fig.1. Strapdown Inertial Measurement Unit IMU / Mounted on foots (pictures from www.openshoe.org) 

1.1 - INERTIAL SYSTEM MEASUREMENT  

Due to drifts, bias, scale factors and noises of inertial sensors, ZUPT and ZARUT are used to aid 

navigation with bounded error of position, velocity and attitude estimation. In this work, we suppose 

both techniques of velocity update and angular rate update are applied with the use of three stationary 

conditions at ones.   

   -ZUPT / ZARU Algorithms  

In its most basic implementation, a shoe-mounted inertial navigation system estimates and corrects 

drift errors via an assisted zero-velocity updating (ZUPT) indirect Kalman filter (IKF).  In this work, 

the zero velocity update (ZUPT) is directly correcting and observing velocity calculated and delivered 

by INS through non linear filters.  The algorithm relies on detecting the foot stance phase in order to 

build a zero-velocity-based pseudo-measurement which is delivered to the EKF, CKF and Cubature 

Information Filter CIF.   

  1.1. A. Zero Velocity Updating (ZUPT) 

The velocity measurement  INSVhz   is given by:    

VV VZ  VVV   ˆ                   

where V  is the measurement noise, modelled as a Gaussian random variable with zero-mean vector 

and covariance matrix VR .  When zero velocity “V=0” is determined, this information is used to 

correct the non linear filter which uses the new innovation given by:  

)//(0)( CIFCKFEKFpredINSv VVhZInnov   

Correcting velocity, it automatically leads to corrected coordinates after integration.  

1.1.B. Zero Angular Updating (AUPT) 

By analogy to ZUPT algorithm, other scientists proposed to use the information of zero angular 

velocity update in order to get accurate estimation of attitude angles yielding also to more accurate 

 (1) 
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velocity and position integration and estimation by the Kalman filter variants. The intuitive idea behind 

ZARUT is that during stance phase, foot attitude is considered constant. It is possible to write attitude 

measurement as given below: 

  nZ   

Where  T  is the vector containing the true IMU’s roll, pitch and yaw angles, with n  white 

Gaussian noise with Covariance matrix  222

 diagQ  .  In this paper, the attitude is 

represented by Euler angles because of the bounded nature of motion, it is not needed to use to the 

quaternion model [2][5].  

    1.2. INS/ZUPT/ZARU Integrated Navigation System 

Several architectures exist and were investigated in the literature [4-5,9]. Different filtering approaches 

with multiple state vector configurations have been widely simulated and experimented.  We comment 

the most common. 

i. The magnitude of the acceleration 

 

      ii.         The magnitude of the gyroscope,  

 

      iii.    The local acceleration variance must above a given threshold: 
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If these three “i,ii,iii” conditions are respected, it is then decided to select sensors outputs at time k as a 

ZUPT and ZARUT measurements.  

Proposal of Direct Filtering approach:  

In direct Kalman filter formulation, direct position, velocity and attitude angles are estimated. As it is 

known to be more computational demanding that indirect filtering, this approach has not been 

extensively explored in the past due to the CPU limitations previously explained. It is now possible to 



 


otherwise

sth
C

0

/501 max

2

     222
321 b

k
b
k

b
kk  

)/50( max sth 

)/11&9 2

maxmin smthth aa 

     222
321 b

k
b
k

b
kk aaaa 



 


otherwise

thath
C ka

0

1 maxmin

1

 (2) 

 (3.a, 3.b) 

 (4.a, 4.b) 

     (5) 

    (6) 



 4 

 

 

propose such direct design as an alternative of high dimensional error state vector usually proposed in 

the indirect filtering approach.  In this method, different non linear filters are applied, most of them 

have been described in [10][12][18], except for CKF which is described in the next section.  

  

Fig2.Direct filtering INS/ZUPT/ZARU  ( Complex Information Computing based on Direct Filtering)   

In this case, the state vector is computed in discrete time as given below, estimating directly the 

navigation states [3][5][10]: 
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With 
b
nC ,

b
nE  are the transformation matrix defined as in [3][5][7-10].  

kl : sensors noise (gyroscopes /accelerometers output),  

 kpn : position vector at time k  knv : velocity vector at time k,   kn : attitude vector at time k 

With the assumption that noises are non Gaussian in the process with: 1

kQ : Covariance matrix of   

kl  ( sensors noises), 2

kQ : Covariance matrix of  kw (system noise) 

kkk vXHZ  )(1
 

H is defined as the dual observation ZUPT and ZARUT. In this case, we assume to have an additional 

direct observation of yaw angle from electronic compass, with:   

                                                                     nCompass  .     

This information is directly used to correct the yaw output of IMU. Real Output Data from IMU ADIS 16438:  

 

 

 

 

 

 

 

Fig3. MEMS IMU gyroscopes output ( original view and zoomed view of 03 angular rates x,y,z) 
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For direct filtering design, H is the identity matrix which means linear measurement. For tightly 

coupled design, H is the distance (or pseudo-distance) from beacons aiding navigation to the receiver 

(RFID or WiFi) mounted on foot with IMU, and in this case, measurements are strongly non linear [4].  

2. Experimental Section  

An application of the shoe-mounted inertial measurement unit IMU was tested [9]. The system 

hardware is composed by an: 

- IMU Analog Device 16367, equipped with accelerometers, gyroscopes and magnetometers that can 

be sampled at 

-250Hz frequency  

- Stance-Still step detector and an assisted AUPT-ZUPT  “Direct Sigma Point Kalman filter” which 

we propose here. 

Experimental results are depicted in Fig.3 and Fig.4. These figures depict a superposition of the IMU’s 

outputs norm against the step detector output, as we can see the stance phases, characterized by almost 

no variation of the norm, are clearly identified. 

 

Fig4. MEMS IMU accelerometers output (view of accelerations and zoomed view of  angular rates x,y,z) 

This detection is based on multiple samples outputs. In our case we used 20 samples to determine if the 

system is in stationary phase or not  such as described in [9].  

3. Results and Discussion Cubature Information Filter/ CKF based on ZUPT/ZARU Updates:  

 

 

 

 

 

 

 

 

Fig5. IMU Pitch angle and yaw angle estimation based on CKF/CIF 
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In Fig.5 it is possible to observe during walking pitch and yaw angles in the zoomed figures. The error 

of standalone inertial system is clear and visible comparing with the EKF, CKF/CIF estimation that are 

following the true trajectory.  

 

 

 

 

 

 

 

 

 

                                     Fig.6. IMU “East Velocity” and “North Velocity” estimation based on CKF/CIF 

 

In Fig.6 it is possible to observe that comparing with measurements, the most efficient and centred 

filter is CIF, somewhat analogue to CKF but after duration of time, after 56 second, it is possible to 

distinguish that CKF and EKF suffer slightly from bias and sensors errors at the opposite of CIF which 

provides the best estimate.  

4. Conclusions 

After different simulations and analysis of results based on real data, the general conclusion is that 

MEMS ADIS IMU 16367 based on CKF is a good candidate for pedestrian navigation applications. 

CKF does not need the computation of any Jacobian or Hessian matrix.  During different analysis, it 

has been observed that it is necessary to estimate accurately steps “stance” and “still” phases during 

walk in order to correct MEMS IMU from drifts and bias of gyroscopes and accelerometers. In 

parallel, in order to prevent initialization impact on the accuracy of coordinate estimation, CIF has 

been an excellent choice to estimate navigation states and presented more robustness against errors and 

bias of inertial sensors during long period of navigation [6][10].   

Acknowledgments 

This work is based on open access project data provided by Openshoe http://www.openshoe.org/ 

Author Contributions 

   The main contribution is the modification of the filtering approach without inertial error propagation. 

Conflicts of Interest 

Any potential conflicts of interest here.   

52 54 56 58 60 62 64
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time in second (s)

E
a
s
t 

V
e
lo

c
it
y
 M

e
te

rs
/S

e
c
o
n
d
  

m
/s

East Velocity vs Time s

INS

True Velocity

ZUPT/ZARU

EKF

CUBATURE KF

CIF

48 49 50 51 52 53 54
3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Time in second (s)

N
o
rt

h
 V

e
lo

c
it
y
 i
n
 M

e
te

rs
/S

e
c
o
n
d
  

m
/s

NORTH Velocity vs Time s

INS

True Velocity

ZUPT/ZARU

EKF

CUBATURE KF

CIF



 7 

 

 

References and Notes 

1. I. Arasaratnam and S. Haykin,” Cubature Kalman  Filtering”, IEEE Trans. Automatic Control, vol.54,no.6, pp.1254-

1269,June 2009 

2. Van der Merwe.R, E. Wan, and S. J. Julier. Sigma- Point Kalman Filters for Nonlinear Estimation and Sensor- Fusion: 

Applications to Integrated Navigation. In Proceedings of the AIAA Guidance, Navigation & Control Conference, 

Providence, 2004. 

3. Benzerrouk,H, Nebylov,A. “Integrated Navigation System INS/GNSS Based on Joint Application of Linear and 

Nonlinear Filtering”, in proceeding of IEEE Aerospace conference, Big Sky, Montana USA, 2011. 

4. C.Fernandez-Prades, P. Closas, J. Vilà-Valls, Nonlinear Filtering for Ultra-Tight GNSS/INS Integration, in Proceedings 

of the IEEE International Conference on Communications (ICC 2010), 23-27 May 2010, Cape Town (South Africa). 

5. John L. Crassidis, « Sigma-Point Kalman Filtering for Integrated GPS and Inertial Navigation”, IEEE Transcation on, 

Aerospace and Electronic systems,2006.  

6. A.R. Jiménez, F, F. Seco, F. Zampella, J.C. Prieto and J. Guevara, Improved Heuristic Drift Elimination (iHDE) for 

Pedestrian Navigation in Complex Buildings, IEEE 2011. 

7. A.R. Jiménez, F. Seco, J.C. Prieto and J. Guevara Indoor Pedestrian Navigation using an INS/EKFframework for Yaw 

Drift Reduction and a Foot-mounted IMU. WPNC 2010: 7th Workshop on Positioning, Navigation and Communication 

2010. 

8. Francisco J. Zampella, Antonio R. Jiménez, F, Fernando Seco, J. Carlos Prieto, Jorge I. Guevara,  Simulation of Foot-

Mounted IMU Signals for the Evaluation of PDR Algorithms. IEEE 2011.  

9. John-Olof Nilsson, Isaac Skog, Peter H¨andel, and K.V.S. Hari ,Foot-mounted INS for Everybody – An Open-source 

Embedded Implementation. IEEE/ION PLANS 2012, pp. 140-145. 

10. Francisco Zampella, Mohammed Khidery, Patrick Robertsony and Antonio R. Jiménez, F.  Unscented Kalman filter and 

Magnetic Angular Rate Update (MARU) for an improved Pedestrian Dead-Reckoning. 2012 IEEE/ION Position, Location 

and Navigation Symposium, PLANS 2012.  

 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 

http://www.cttc.es/document/d4d8be472896e73e0128f3c036ec0029/publications-copyright.jsp

