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Abstract: In the design of Lorentz force MEMS magnetometers, the coupled thermo-

electro-magneto-mechanical fields governing the dynamics of the relevant compliant 

structures can be appropriately exploited to enhance their performances. In recent works, we 

showed that reduced-order models for the dynamics of the said movable structures can be 

recast in the form of the Duffing equation, where nonlinear terms arise from the multi-

physics governing the problem. As stochastic effects may play a role due to the micrometric 

dimensions of the device, an investigation of the link between the statistics of sensor 

imperfections and output is here carried out. The said imperfections at the microscopic 

length-scale are modeled in terms of: overetch thickness, assumed to feature a uniform 

distribution in a proper interval matching available experimental data; and elastic properties 

of the vibrating polycrystalline silicon film, as obtained through a numerical homogenization 

procedure over a representative film volume. To get insights into the effects of the 

parameters governing the nonlinear dynamics of the resonant structure, a Monte Carlo 

analysis is adopted. 

Keywords: MEMS; Lorentz force magnetometer; coupled thermo-electro-magneto-
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1. Introduction 

Rapid development of semiconductor manufacturing technology has enabled the mass production of 

micro electrical-mechanical system (MEMS) devices, like e.g. magnetometers. To design and predict 

the performance of this kind of devices, it is required to accurately model the interaction of various 

physical fields like the mechanical, thermal, electric and magnetic ones. In recent years, different 

numerical and analytical methods were proposed to better understand the underlying working 

principles, and increase the ability to capture the experimental evidence [1-3]. 

These approaches assume that the geometrical and physical properties of the device are known in a 

deterministic sense. In reality, significant uncertainties in these properties are unavoidable due to a 

variety of factors linked to the chemical and physical processes adopted for manufacturing. For 

example, there could always be a so-called overetch associated with the geometrical features of the 

sensor structure, like e.g. the width of beams and the relevant gap from the substrate. Material 

properties, such as the Young’s modulus of polycrystalline films, can be another source of 

uncertainties. As a result, it is imperative to assess the effects of these stochastic variations on various 

design parameters, or performance indexes through theoretical and/or computational approaches. 

The MEMS system considered in this work is a uniaxial capacitive Lorentz force magnetometer. To 

model its dynamics, a coupled thermo-electro-magneto-mechanical formulation was presented in [2] and 

is here further discussed, along with a rather standard approach to obtain a relevant reduced-order (1 

degree-of-freedom, DOF) model. We then exploit a numerical homogenization procedure to obtain the 

probability density function (pdf) of the Young’s modulus for a representative volume of 

polycrystalline films. As details of the manufacturing process cannot be directly linked to the pdf of 

the overetch thickness, the said pdf is assumed to be constrained uniform. A Monte Carlo analysis is 

then exploited to propagate these uncertainties by means of the proposed multi-physics formulation, 

specifically focusing on the device sensitivity. 

2. Reduced-order model of the vibrating MEMS structure 

Figure 1. SEM image of the moving structure of the resonant Lorentz force MEMS 

magnetometer, and relevant reference frame. 

 

 

 

As already reported in [2], part of the resonating structure of the studied Lorentz force MEMS 

magnetometer is as shown in Figure 1. This structure senses any magnetic field aligned with the out-

of-plane direction ( , according to the reference frame of Figure 1); sensing is obtained thanks to the 

two parallel plates attached to the mid-span cross-section of the beam. 

The beam, featuring a length   and a cross-section of area     , is assumed in a clamped-

clamped configuration. Its elastic response is modeled according to second-order theory, allowing for 

lateral deflections small in amplitude but affecting the equilibrium state. Due to the beam slenderness, 

dynamic equilibrium is enforced in weak form through: 
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where:    stands for the variation of field  ;       ,   being time, is the lateral deflection;    

    ⁄  and           ⁄  respectively represent the rotation and the curvature of the beam axis; 

 ̈        ⁄  represents the lateral acceleration field along the beam axis;    is the flexural rigidity of 

the beam;   is the mass per unit length of the beam;   is the axial compressive load, related to residual 

stresses;   is the magnitude of the lateral load per unit length, provided by the external actions. 

To obtain from Eq. (1) a 1-DOF, reduced-order model of the system, we assume the beam to 

deform according to its fundamental, linear flexural vibration mode. Due to the clamped-clamped 

boundary conditions, this mode reads: 
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Here, the variations in space and time are multiplicative decomposed, and   represents the lateral 

displacement at the mid-span cross-section. The motion of the beam is then described by: 

  ̈    ̇         
          (3) 

where, see [2]: 
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represent the effective mass, damping, linear and cubic stiffness, and external load terms. In Eqs. (4): 

   is the mass per unit length of the attached sensing plates;   is the viscosity coefficient of the air 

surrounding the resonating structure;   is the gap between the two surfaces of the parallel-plate 

capacitors;   is the coefficient of longitudinal thermal expansion;     is the mid-plan temperature 

raise due to Joule effect;    is the driving potential;    is the permittivity of vacuum;   is the density of 

the current longitudinally flowing in the beam;   is the magnitude of the magnetic field to be sensed. 

In the formulation here above, the mass term accounts for the contributions of the beam itself and of 

the attached plates for sensing. The damping terms is instead coming from the interaction between the 

plates and the fixed sensing electrodes, leading to a squeeze of the fluid film in between. The three 

contributions to the term    are respectively provided by: the bending stiffness of the beam; the 

softening (hence the minus sign) due to the Joule effect, leading to the temperature increase measured 

by its maximum amplitude    ; and the electrostatic softening linked to the parallel-plate capacitors 

for sensing. The two contributions to the nonlinear term    are instead respectively given by: the 

relaxation of the thermal-induced axial load at second-order, due to the longitudinal stretch of the 

beam; and once again the softening provided by the parallel-plate capacitor effects. Finally, the 

external load accounts for the Lorentz effect, as it results proportional to the density   of the current 

flowing in the beam and to the external magnetic field  . 
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Relation (3), known as the Duffing equation, provides a maximum amplitude at varying circular 

frequency   of the forcing term            as a solution to [2]: 
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where    √   ⁄ . At resonance  the magnitude of      is: 
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In [2], we proposed a procedure to optimally set the length   and the width   of the beam (  being 

assigned due to technological reasons) in order to maximize |    | and also minimize the relevant 

power consumption, simultaneously. Starting from the obtained solution of this multi-physics 

optimization, we assess next the sensitivity of such configuration to imperfections. 

3. Stochastic analysis: sensitivity to imperfections 

Figure 2. Monte Carlo analysis: input statistical distributions (given in terms of 

occurrences in the analysis) of (a) width   and (b) polysilicon Young’s modulus  . 

(a) 

(b) 

In this Section, we focus on the assessment of micro-scale stochastic effects on the device 

sensitivity, as measured by the amplitude |    | of the nonlinear oscillations of the resonant structure. 

Additional effects obviously play a role in defining not only the aforementioned sensitivity of the 

device, but also all the other performance indexes like, e.g. power consumption, bandwidth, and 

resolution, see [3]. Such effects are here disregarded to get specific insights into the effects on the 

sensitivity of so-called micro-scale imperfections, as measured by the scattering of the beam width   

and of the Young’s modulus   of the polysilicon film constituting the movable structure. 

The beam width cannot be known deterministically, as overetch might induce scattering around the 

target or design value  ̅. Since information is rather poor concerning the possible pdf of the overetch 
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thickness to be adopted in the analysis, we have opted for a uniform distribution in a pre-defined 

interval [ ̅    
    ̅    

 ], where   
  and   

  were given in the order of 0.15 m on each side of the 

beam, see Figure 2(a). 

Recent analyses [4] showed that, in the case of slender vibrating beams, the polycrystalline 

morphology may affect much the resulting structural response through its overall Young’s modulus. In 

fact, if the beam width   in on the same length-scale of the characteristic size or diameter   of a single 

Si grain, the local arrangement (hence, the film morphology) gives rise to a bending stiffness which 

cannot be appropriately described through an average, characteristic value only, to be obtained e.g. via 

asymptotic homogenization. Accordingly, to catch high order statistics of the pdf of  , a Monte Carlo 

analysis has been run to obtain the data reported in Figure 2(b). Due to the target beam width     

m and to the standard size        m of the Si grains, in order to attain objective statistical 

properties 1,000 numerical homogenization analyses [4] have been run, each one featuring its own film 

morphology. 

 

Figure 3. Monte Carlo analysis: output statistical distribution of the amplitude |    | of 

the oscillations, as a function of (a) width   and (b) Young’s modulus  . The red lines 

represent the results provided by the analytical model of Section 2. 

(a) 

(b) 

 

Accounting for the number of realizations adopted in the former homogenization step to build the   

pdf, 1,000 analyses have been run here as well. The only approximation adopted in this Monte Carlo 

analysis was to consider the values of   and  , even if scattered, independent of the longitudinal beam 

coordinate  . Considering a variable distribution also function of  , would lead to local bending effects 

not compliant with the assumption, in the analytical model of Section 2, that beam deforms according 

to its first flexural mode. This topic will be further addressed in future investigations. 

Figure 3 gathers the results of the Monte Carlo investigation, in terms of scattering of the amplitude 

|    | of the oscillations at varying   and  ; here each structure realization leads to a single blue 

circle. Further to the output of the Monte Carlo analysis, the results of the analytical and deterministic 

model of Section 2 are also reported with the red lines. Besides the matching between the two series of 

results, it looks worth discussing two details arising from the graphs: the spreading around the average 

effect of   is smaller than that around  ; the sensitivity (in these graphs measured by the slope of the 

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4

x 10
-6

0

200

400
h distribution

1.4 1.42 1.44 1.46 1.48 1.5 1.52 1.54 1.56 1.58 1.6

x 10
11

0

200

400
E distribution

1 1.1 1.2 1.3 1.4 1.5 1.6

x 10
-11

0

500
amplitude histogram

amplituden
u
m

b
e
r 

o
f 

o
c
c
u
rr

e
n
c
e

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4

x 10
-6

1

1.5

2
x 10

-11

h

a
m

p
lit

u
d
e

1.4 1.42 1.44 1.46 1.48 1.5 1.52 1.54 1.56 1.58 1.6

x 10
11

1

1.5

2
x 10

-11

E

a
m

p
lit

u
d
e

1.6 1.8 2 2.2 2.4

x 10
-6

1.41.451.51.551.6

x 10
11

1

1.5

2

x 10
-11

hE

a
m

p
lit

u
d
e

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4

x 10
-6

-1

-0.5

0
x 10

-5

h

s
e
n
s
it
iv

it
y

1.4 1.42 1.44 1.46 1.48 1.5 1.52 1.54 1.56 1.58 1.6

x 10
11

-5

-4

-3
x 10

-23

E

s
e
n
s
it
iv

it
y

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4

x 10
-6

0

200

400
h distribution

1.4 1.42 1.44 1.46 1.48 1.5 1.52 1.54 1.56 1.58 1.6

x 10
11

0

200

400
E distribution

1 1.1 1.2 1.3 1.4 1.5 1.6

x 10
-11

0

500
amplitude histogram

amplituden
u
m

b
e
r 

o
f 

o
c
c
u
rr

e
n
c
e

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4

x 10
-6

1

1.5

2
x 10

-11

h

a
m

p
lit

u
d
e

1.4 1.42 1.44 1.46 1.48 1.5 1.52 1.54 1.56 1.58 1.6

x 10
11

1

1.5

2
x 10

-11

E

a
m

p
lit

u
d
e

1.6 1.8 2 2.2 2.4

x 10
-6

1.41.451.51.551.6

x 10
11

1

1.5

2

x 10
-11

hE

a
m

p
lit

u
d
e

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4

x 10
-6

-1

-0.5

0
x 10

-5

h

s
e
n
s
it
iv

it
y

1.4 1.42 1.44 1.46 1.48 1.5 1.52 1.54 1.56 1.58 1.6

x 10
11

-5

-4

-3
x 10

-23

E

s
e
n
s
it
iv

it
y



 6 

 

 

red lines) to   is higher than the sensitivity to  . The former result is induced by the adopted values   
  

and   
 , compared to the queues of the statistics of   obtained through the Monte Carlo 

homogenization on a film representative volume. The latter result is instead linked to the physics of the 

problem at hand, as   affects linearly the stiffness    in Eq. (4)3 whereas   affects cubically (through 

 ) the same term. 

4. Conclusions 

In this work, we have discussed a reduced-order model of the resonance dynamics of the movable 

structure of a Lorentz force MEMS magnetometer. Such model fully accounts for the (weakly) coupled 

thermo-electro-magneto-mechanics governing the magnetic field-induced vibrations of the structure. 

A statistical analysis at the micro-scale has been then developed, in order to assess the sensitivity of 

the sensor performance to micrometric imperfections, potentially linked to the overetch and to the 

morphology of the polysilicon film constituting the vibrating structure. A Monte Carlo investigation 

has been run, using as input a constrained uniform pdf for the beam width and a pdf for the beam 

Young’s modulus as provided by a statistical homogenization over a sample of the polycrystalline 

film. Results of the analysis have been shown to well agree with the outcomes of the aforementioned 

deterministic reduced-order model, which indeed provides only average information on the device 

performance. 

Acknowledgments 

The financial support by STMicroelectronics through the Material Reliability project is gratefully 

acknowledged. 

References and Notes 

1. Li, M.; Rouf, V.T.; Thompson, M.J.; Horsley, D.A. Three-axis Lorentz-force magnetic sensor 

for electronic compass applications. Journal of Microelectromechanical Systems 2012, 21, 1002-

1010. 

2. Bagherinia, M.; Bruggi, M.; Corigliano, A.; Mariani, S.; Lasalandra, E. Geometry optimization 

of a Lorentz force, resonating MEMS magnetometer. Microelectronics Reliability 2014, to 
appear. 

3. Bagherinia, M.; Corigliano, A.; Mariani, S.; Horsley, D.A.; Li, M.; Lasalandra, E. An efficient 

earth magnetic field MEMS sensor: modelling and experimental results. Proceedings MEMS 
IEEE 2014, 26-30 January 2014, San Francisco, CA, pp. 700-703. 

4. Mariani, S.; Martini, R.; Ghisi, A.; Corigliano, A.; Beghi, M. Overall elastic properties of 

polysilicon films: a statistical investigation of the effects of polycrystal morphology. 

International Journal for Multiscale Computational Engineering 2011, 9, 327-346. 

 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


