Dynamic Activity Recognition Using Smartphone Sensor Data

International Electronic Conference on Sensors and Applications 1 - 16 June 2014

Rajeev Piyare^{1,*} and Seong Ro Lee² Department of Electronics Engineering Mokpo National University, South Korea <u>rajeev.piyare@hotmail.com</u>

Overview

Introduction and Motivation

Methodology

Data Processing and Classification

Conclusion and Outlook

Introduction and Motivation

"Dynamic Activity recognition using smartphone sensor data"

Why activity recognition?

- Patient monitoring
- Sport trainers
- Emergency detectors
- Diary builders

accelerometer

Location systems

How to perform activity recognition? Video processing Wearable sensors

- Ad-Hoc sensors
- Personal mobile embedded sensors
 - Accelerometers, gyroscopes, compass, camera, microphone, etc.
 - Mainly infrastructure-based
 - Network coverage, latency, privacy, etc.

What about using smartphones processing capabilities for activity recognition?

- Their use on a daily basis
- Processing capabilities are growing spectacularly

Focus

- How smart phones can be used to recognize dynamic human activities
- Investigates the best machine learning model for classifying the investigated activities from the acceleration data.

Proposed System

Figure 1. System overview

Architecture Details

On-line Stage

Figure 2. System Architecture

Methodology

Figure 3. Classifier Evaluation Module

Methodology

Data Collection

- Smartphone Sensor: 3D accelerometer @ 20 Hz
- Cell phone in front pants leg pocket
- Participants:50 healthy subjects (30 males and 20 females)
- Dynamic Activities: walking, jogging, using stairs, walking downstairs, sitting, standing and lying down-total of 6 activities
- Data was collected in a naturalistic fashion rather than lab environment

Methodology (cont)

Data Collection App

Participants Characteristics

Table 1. Summary of Physical characteristics of the participants.

	Avg.	Min	Max
Age (years)	23	21	35
Weight (kg)	67	53	85
Height (cm)	172	142	187
BMI (kg/m^2)	24.9	18.5	29.9

Figure 3. Smartphone interface for Data collection

Feature Extraction

- Simple time domain statistical features using a window size of 512 samples with 256 samples overlapping between consecutive windows.
- Five features from each window, with a total of 13 attributes.

No.	Feature	No. of features generated	Formula
1	Mean	3	$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
2	Standard Deviation	3	$\sigma_x = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2}$
3	Mean Absolute Deviation	3	$MAD_x = \sqrt{\frac{1}{n-1} \sum_{i=1}^n x_i - \overline{x} }$
4	Magnitude	1	$mag = \sqrt{x^2 + y^2 + z^2}$
5	Time between peaks	3	

 Table 2. Summary of the set of features extracted.

Evaluation

Classification Models

- BN (Bayesian Network),
- MLP (Multilayer Perceptron),
- NB (Naïve Bayes),
- J48 (C4.5 Decision Tree),
- RT (Random Tree),
- RBFNet (Radial Basis Function Network),
- SMO (Sequential Minimal Optimization) and
- Logistic Regression.

Evaluation

- Classification Models (cont)
 - 1. To determine whether a classifier is superior than another, a 5x2 fold cv was performed using the WEKA.
 - 2. A paired t-test

In practice, a 10-fold cross validation is the most widely used methodology to calculate the accuracy of a classifier. However, in order to choose the most accurate one by comparing the two classifiers, a 5x2-fold cross validation along with a paired *t*-test is recommended¹.

¹T. G. Dietterich, "Approximate statistical tests for comparing supervised classification learning algorithms," *Neural computation*, vol. 10, pp. 1895-1923, 1998.

Performance Measures

 F-measure was used as a performance index to evaluate the different classifiers ability to classify each of the activities.

$$\Pr ecision = \frac{TP}{TP + FP}$$

Precision is a measure of the accuracy provided that a specific class has been predicted

$$\operatorname{Re} call = \frac{TP}{TP + FN}$$

Recall is a measure of the ability of a prediction model to select instances of a certain class from a data set. (Sensitivity)

 $F - measure = 2 \times \frac{\Pr ecision \times \operatorname{Re} call}{\Pr ecision + \operatorname{Re} call}$

A higher F-measure value indicates improved detection of the investigated activity.

Offline analysis using WEKA (subject-independent)

8 classifiers with five different random seeds

 $s_i = \{1,\!128,\!255,\!1023,\!4095\}$

	<u> </u>	<i>s</i> ₂	<i>s</i> ₃	s ₄	<i>s</i> ₅	Avg.	<i>p</i> -value
BN	76.8211	77.8112	77.1924	77.3868	77.2984	77.302	< 0.001
MLP	93.9003	94.4484	93.8649	93.8649	94.1478	94.045	0.001
NB	58.0622	57.6025	57.4257	57.7086	56.4887	57.457	< 0.001
J48	94.9788	95.1556	95.0318	95.4031	95.2086	95.156	-
RT	93.6704	94.4031	94.4837	94.6782	94.5191	94.351	0.004
RBFNet	72.0297	71.7999	71.0396	73.0375	72.7723	72.136	< 0.001
SMO	89.4802	89.7808	90.1167	90.2758	89.71	89.872	< 0.001
Logistic	91.9024	92.6096	92.4505	92.7157	91.7786	92.291	< 0.001

Table 3: Percentage Classification accuracy given by the 5x2-fold cross validation

Subject-independent Analysis (5x10-Fold cv)

Overall Accuracy: 96.0219% J48 Walking **Stairs** Sitting Standing LyingDown Jogging Precision 0.971 0.92 0.851 0.967 0.957 0.964 0.98 0.845 0.973 Recall 0.875 0.958 0.948 0.975 **F**-measure 0.897 0.848 0.963 0.965 0.956 FPR 0.019 0.003 0.007 0.012 0.008 0.004 FNR 0.020 0.125 0.155 0.041 0.027 0.052

Table 4: Evaluation metrics for the best classifier: precision, recall, F-measure, FPR, FNR for J48.

Online Recognition via 2 new subjects (subject-dependent)

		Individual A-Predicted Class (Overall Accuracy: 92.36%)					
		Walking	Jogging	Stairs	Sitting	Standing	LyingDown
	Walking	30	0	1	0	0	0
l Class	Jogging	0	19	0	0	0	0
	Stairs	0	1	39	0	0	0
tua	Sitting	1	0	0	7	5	0
Ac	Standing	0	0	0	3	62	0
	LyingDown	0	0	0	2	0	0

Table 5: Confusion matrix for Individuals A and B

		Individual B- Predicted Class (Overall Accuracy 97.30%)						
		Walking	Jogging	Stairs	Sitting	Standing	LyingDown	
	Walking	60	0	0	0	0	1	
Class	Jogging	0	12	0	1	0	0	
	Stairs	0	0	4	0	0	0	
ctual	Sitting	0	0	0	18	0	0	
Ac	Standing	0	0	0	0	0	0	
	LyingDown	0	0	0	1	0	14	

HAR Application Interface

Figure 4: Mobile application User interface

This work vs. other state of the art

	Awan et al[2]	Kwapisz[3]	Centinela[4]	eWatch[5]	This Work
walking	100	90.6	94.28	92	97.96
running	-	-	100	93	-
stairs	-	77.6	92.1	68	84.46
sitting	94.73	96.5	100	99	95.83
jogging	96.15	96.9	-	-	87.5
standing	98.01	93.7	-	-	97.34
Lying down	-	-	-	-	94.83
Total (%)	97.13	92	95.7	92.8	96.02

*Values marked with (-) indicate that the particular activity was not considered.

²M. A. Awan, Z. Guangbin, and S.-D. Kim, "A Dynamic Approach to Recognize Activities in WSN," *International Journal of Distributed Sensor Networks*, vol. 2013, 2013.

³J. R. Kwapisz, G. M. Weiss, and S. A. Moore, "Activity recognition using cell phone accelerometers," *ACM SIGKDD Explorations Newsletter*, vol. 12, pp. 74-82, 2011.

⁴Ó. D. Lara, A. J. Pérez, M. A. Labrador, and J. D. Posada, "Centinela: A human activity recognition system based on acceleration and vital sign data," *Pervasive and Mobile Computing*, vol. 8, pp. 717-729, 2011.

⁵U. Maurer, A. Smailagic, D. P. Siewiorek, and M. Deisher, "Activity recognition and monitoring using multiple sensors on different body positions," in *Wearable and Implantable Body Sensor Networks, 2006. BSN 2006. International Workshop on*, 2006, pp. 4 pp.-116.

Conclusion

- J48 provided the most accurate classification results (up to 96.02%)
- Most activities being recognized correctly over 95% of the time
- System does not require a server for feature extraction and processing, thus, reducing the energy expenditures and making it more robust and responsive.

Outlook

Focus on identifying the best machine learning algorithm for finer grain activities such as fall detection, sitting reading or sitting eating.

Effects on the classification accuracy from sensors such as gyroscopes and magnetometers

Thank you for your time.