

1st International Electronic Conference on Materials 26 May - 10 June 2014

Sol-gel Synthesis and Antioxidant Properties of Yttrium Oxide Nanocrystallites Incorporating P-123

Rebeca Mellado-Vázquez, <u>Margarita García-Hernández</u> Arturo López-Marure, Perla Yolanda López-Camacho Angel de Jesús Morales-Ramírez, Hiram Isaac Beltrán-Conde

mgarciah@correo.cua.uam.mx

1st International Electronic Conference on Materials

INTRODUCTION

NANOMATERIALS: Small structures with high potential

1st International Electronic Conference on Materials

In nanometer scale the properties are not the same to bulk materials.

1st International Electronic Conference on Materials

Aplications of Y₂O₃

1st International Electronic Conference on Materials

Synthesis Methods of Y₂O₃

1st International Electronic Conference on Materials

SYNTHESIS PROCEDURE OF Y2O3

- ✓ [Y(NO₃)₃]
- ✓ [YCl₃]
- ✓ [CH₃OH]
 Acetylacetone

Poloxámero P-123

CH3

OH

XEROGEL / 24 h a 90 °C

Densify and cristallize:

Heat treatmeat at 270 °C (2 h), 500 °C, 700 °C, 800 °C y 900 °C for 1 h

Chemical, estructural and antioxidant characterization of Y₂O₃ nanocrystallites

SYNTHESIS PROCEDURE OF Y2O3

Table 1. Y_2O_3 systems prepared by sol-gel method, key words and general description.

Keywords	Precursor	Matrix	Poloxamer	Y:P123 Molar Rat.	T / °C	Crystalite size / (nm)
Y1	Y(NO ₃) ₃	Y ₂ O ₃	-	-	700	26
Y2					800	27
Y3					900	26
Y4	YCl₃		-	-	700	32
Y5					800	29
Y6					900	29
Y9	Y(NO ₃) ₃		P-123	1:1	900	21
Y10				2:1	900	28
Y11	YCl₃		P-123	1:1	900	29
Y12				2:1	900	29

1st International Electronic Conference on Materials

RESULTS

1st International Electronic Conference on Materials

In the samples Y1 and Y2 is only observed the absorption band of oxygen-metal in around 500 and 600 cm⁻¹

No secondary phases are found. It can be notice that the cubic structure of Y_2O_3 is formed at 700 °C and its remained stable until 900 °C [PDF cart 201412].

DRX of Y₂O₃

Figure 3. Y₂O₃ systems prepared from yttrium nitrate and yttrium chloride at different temperatures.

The samples synthesized from yttrium nitrate (Y1-Y3) showed a greater degree of crystallization compared with synthesized from yttrium chloride (Y4-Y6).

Figure 5. Y₂O₃ powder synthetized from yttrium chloride with and without P-123 poloxamer heat treated at 900 °C for 1 hour.

The crystallization degree comparison of the system prepared from yttrium nitrate and yttrium chloride with and without P-123 poloxamer.

DRX of Y₂O₃

Figure 6. XRD pattern of Y₂O₃ powder synthesized from yttrium nitrate and yttrium chloride using P-123 poloxamer in a molar ratio of P-123:Y, 2:1.

The XRD results revealed that the yttrium oxide systems embedded in P-123 poloxamer in a molar ratio of P-123:Y; 2:1presented better crystallization degree.

1st International Electronic Conference on Materials

ANTIOXIDANT ASSAYS of Y₂O₃

Figure 7. Time dependent of DPPH withoutFigure 8. Time depedent of DPPH scavenging
by yttrium oxide nanocrystallites (sample Y12).

The DPPH without nanoparticles does not revel changes in absorption characteristic peak.

the diminishing of the DPPH begin from first 5 min and it is evident after 60 min. It is known that the antioxidant property may be due to the neutralization of free radical character of DPPH which is by transfer a electron between the reactant.

CONCLUSION

- ✓ Yttrium oxide nanocrystallites were successfully synthesized by sol-gel method from yttrium nitrate and yttrium chloride as precursor.
- ✓ The yttrium oxide nanostructured powders elaborated from yttrium chloride and embedded in P-123 poloxamer in a molar ratio of P-123:Y 2:1 presented better physicochemical properties (crystallinity and purity) that systems prepared from yttrium nitrate precursor.
- ✓ Yttrium oxide powder presented crystallites size in the range of 21 to 32 nanometers.
- ✓ The DPPH studies are reported for first time for yttrium oxide synthesized by sol-gel method due to a directly comparison cannot be made.
- Yttrium oxide nanocrystallites show enhanced antioxidant potency which leading a new promising material in biological system.

The authors acknowledge to the financial support of SEP-ConacyT 178817, PROMEP 47310345 and UAM-C-CA-23 projects.

1st International Electronic Conference on Materials

REFERENCES

- 1. De Aza P. N., De Aza A. H., Pena P., De Aza S.. Vidrios y Vitrocerámicos Bioactivos, Boletín de la Sociedad Española de Cerámica y Vidrio **2007**, *46(2)*, 45-55.
- 2. Chevalier J., Gremillard L., Deville S. Low-Temperature Degradation of Zirconia and Implications for Biomedical Implants. Annual Reviews Material Ressources **2007**, *37*, 1–32.
- 3. Ghulam M., Vijendra K.M., Pandey H.P. Antioxidant properties of some nanoparticle may enhance wound healing in T2DM patient. Digest Journal of Nanomaterials and Biostructures **2008**, *3(49)*, 159-162.
- 4. Park J.-H., Back N. G. Annealing Effect on Photoluminescence Intensity of Eu-Doped Y2O3 Nanocrystals. Journal of the Korean Physical Society **2005**, *47*, S368-S371.
- Flores-Gonzalez M.A., Lebbou K., Bazzi R., Louis C., Perriat P., Tillem <u>Preparing nanometer scaled Tb-doped Y₂O₃ luminescent powders by the polyol method</u>. J.Cryst. Growth 2005, 277, 502–508.
- 6. Wang SY, Lu ZH. Preparation of Y_2O_3 thin films deposited by pulse ultrasonic spray pyrolysis. Mater Chem Phys **2003**, 78, 542–545.
- Bohus G., Hornok V., Oszkó A., Vértes A., Kuzmann E., Dékány I., Structural and luminescence properties of Y₂O₃:Eu³⁺ core–shell nanoparticles. <u>Colloids and Surfaces A: Physicochemical and Engineering Aspects</u>. **2012**, 405, 6-13.
- 8. Mackenzie JD, Bescher EP. Physical properties of **sol-gel** coatings. J Sol-Gel Sci Tech **2000** *19*, 23–29.
- 9. Qiao Y, Guo H., Upconversion Properties of Y₂O₃:Er Films Prepared by Sol-Gel Method. J Rare Earhs **2009** *27*, 406–410.
- Carrillo Romo F. de J., Morales Ramírez A. de J., García Murillo A., García Hernández M., Jaramillo Vigueras D., Garibay Febles V. Sol-gel Synthesis of Eu^{3+;}Tb³⁺ Co-doped Y₂O₃ Scillinting Nanopowders. International Journal Of Materials Research **2012**, *103*, 1244-1250.
- Carrillo Romo F., García Murillo A., López Torres D., Cayetano Castro N., Romero V.H., De la Rosa E., Garibay Febles V., García Hernández M., <u>Structural and luminescence characterization of silica coated Y₂O₃:Eu³⁺ nanopowders</sub>, Optical Materials **2010**, *32*,1471-1479.
 </u>
- 12. <u>Naik GH, Priyadarsini KI, Satav JG, Banavalikar MM, Sohoni DP, Biyani MK, Mohan H.</u> Comparative antioxidant activity of individual herbal components used in Ayurvedic medicine. Phytochemistry. **2003**, *63(1)*, 97-104.
- 13. Patterson L. A. The Scherrer Forumula for X-Ray Particle Size Determination, Physical Review **1939** *56* 978-982.

1st International Electronic Conference on Materials