

# The 4th International Electronic Conference on Processes



20-22 October 2025 | Online

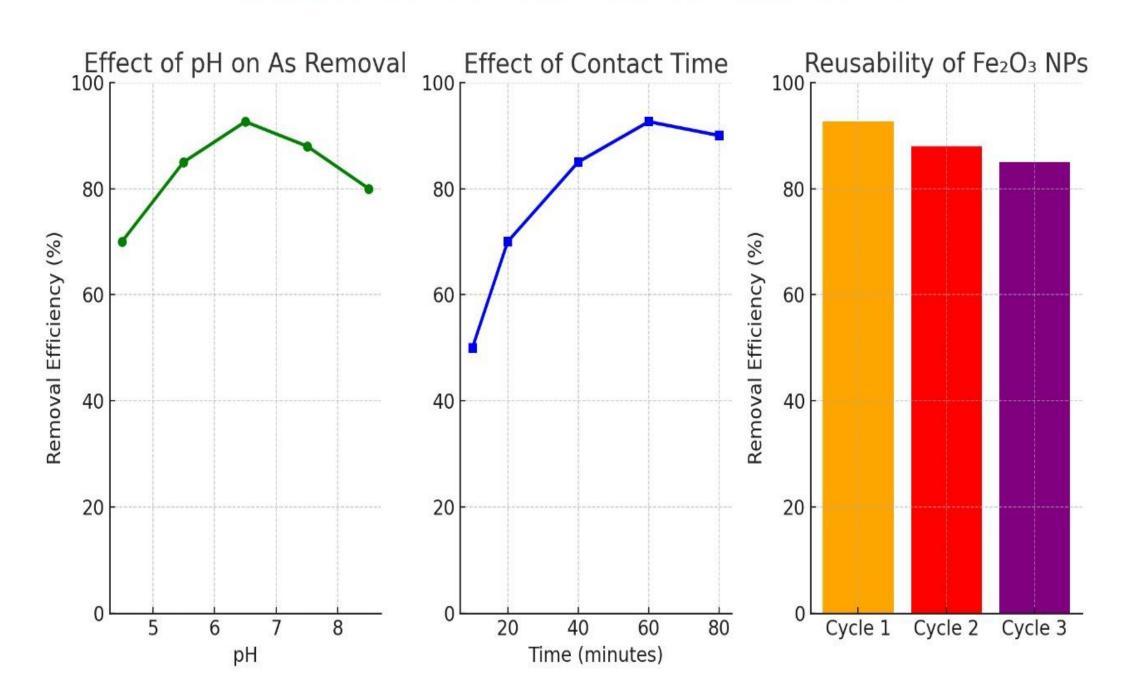
Green Synthesis of Iron Oxide Nanoparticles Using Moringa oleifera Leaf Extract for the Adsorptive Removal of Arsenic from Groundwater in Southern Punjab, Pakistan

Abid Hussain1, Muhammad Kabir1

1Department of Biological Sciences, Thal Univeristy Bhakkar, Bhakkar, 30000, Punjab, Pakistan

### **INTRODUCTION & AIM**

- Arsenic in Punjab groundwater exceeds WHO limits.
- Conventional methods are costly and harmful.
- Fe<sub>2</sub>O<sub>3</sub> NPs show strong arsenic adsorption.
- Aim: Green synthesis using *Moringa* oleifera leaves.


## **METHOD**

- Aqueous leaf extract as reducer/stabilizer.
- Green synthesis of Fe<sub>2</sub>O<sub>3</sub> NPs.
- Characterization: UV–Vis, FTIR, XRD, SEM.
- Batch adsorption under varied pH, time, dosage.
- Groundwater tested with AAS.
- Reusability tested across cycles

# **RESULTS & DISCUSSION**

- Spherical NPs, 20–40 nm size.
- 92.6% removal at pH 6.5 in 60 min.
- 85% efficiency after 3 cycles.
- Eco-friendly, low-toxicity method.
- Cost-effective arsenic remediation.

#### Adsorptive Removal Performance of Green-Synthesized Fe<sub>2</sub>O<sub>3</sub> NPs



### CONCLUSION

- Moringa-based Fe<sub>2</sub>O<sub>3</sub> NPs are eco-friendly and efficient
- Practical due to high efficiency and reusability.

# **FUTURE WORK / REFERENCES**

Test large-scale field applications and long-term use.