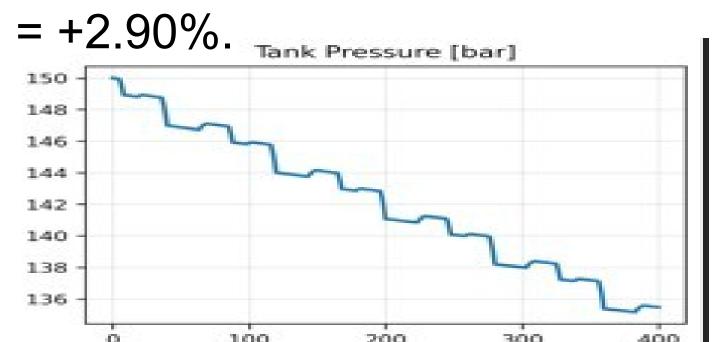


The 4th International Electronic Conference on Processes

20-22 October 2025 | Online

HEPV Re-evaluation Reveals Practical Limitations

YUSUF CEMAL İŞBUĞA Independent Researcher, İstanbul, Türkiye orcid.org/0009-0001-7565-9753

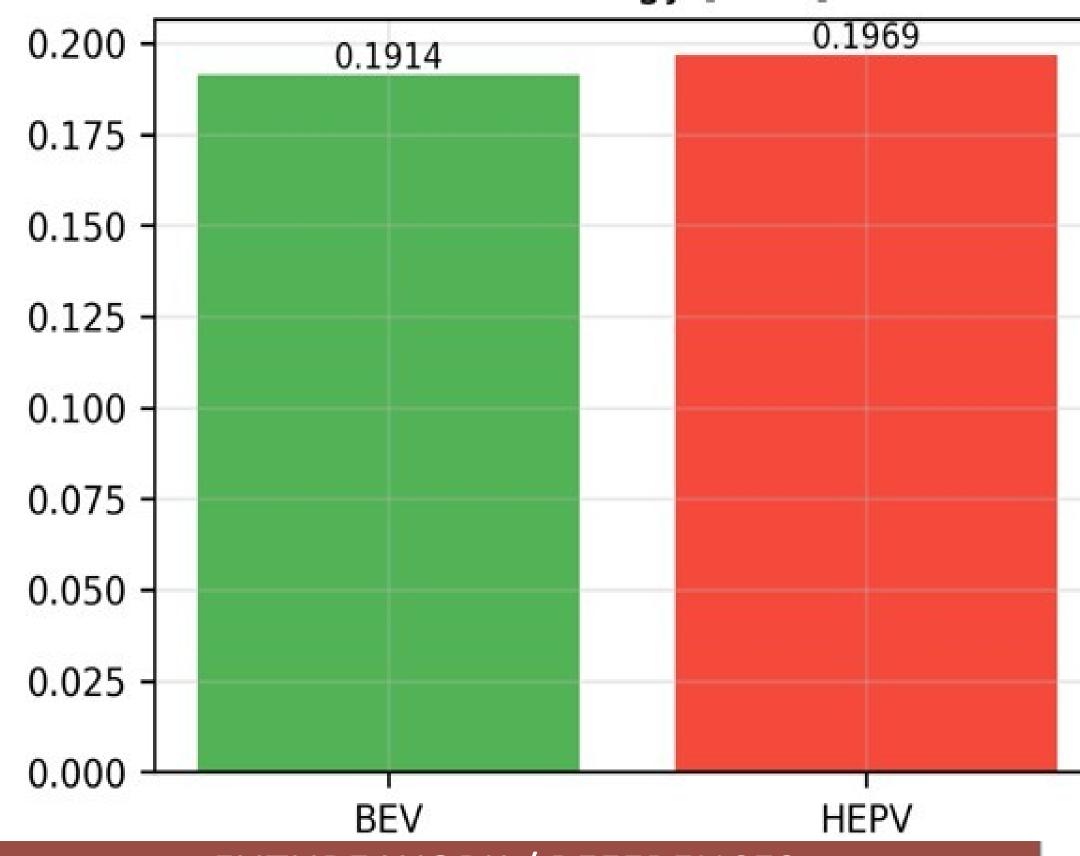

INTRODUCTION & AIM

Hybrid Electric-Pneumatic Vehicles (HEPV) have been proposed as energy-efficient alternatives for urban mobility, with claimed fuel savings of 30–45% (Peugeot, Tata trials). Preliminary simulation results (v3.0) suggesting such savings contained critical modeling errors: a double efficiency penalty in pneumatic discharge and a non-mass-based tank thermodynamics implementation (P·V^n instead of mass-based P = mRT/V). AIM: Present corrected validation results (v3.1-beta) and demonstrate the value of transparent error reporting in preventing wasted R&D investment. v3.1-beta (WLTP urban 400 s, dt=0.1 s) shows HEPV = 0.1969 kWh vs BEV = 0.1914 kWh (Δ = +2.90%), indicating a net energy penalty under the tested assumptions; full data and code available in the project repository.

METHOD

Baseline (v3.0): two physics flaws identified — energy draw implemented as $E = P/\eta^2$ (double- η penalty) and tank thermodynamics omitted the mass term (used P·V^n). Corrected (v3.1-beta): tank thermodynamics updated to mass-based P = mRT/V; energy flow fixed to E = P/ η ; pressure-dependent expander efficiency map added. Simulation: 450 kg BEV vs 500 kg HEPV (\approx +50 kg pneumatic hardware) on WLTP urban 400 s (dt = 0.1 s); pneumatic assist active 360/400 timesteps; battery capacity = X kWh. Result: v3.1-beta shows HEPV consumes +2.90% more cumulative traction energy than BEV (BEV = 0.1914 kWh, HEPV = 0.1969 kWh), overturning prior v3.0 savings claims.

One-line tag: v3.1-beta (WLTP urban 400 s): HEPV = 0.1969 kWh vs BEV = 0.1914 kWh; Δ



RESULTS & DISCUSSION

HEPV \rightarrow +2.9% cumulative traction energy vs BEV (WLTP urban 400 s). Main drivers: ~3× lower tank \rightarrow wheel conversion efficiency (electric drivetrain \approx 90% vs pneumatic chain \approx 25%), \approx +50 kg additional storage mass, and negligible net battery relief from pneumatic assist. Conclusion: Under v3.1-beta validation and tested assumptions, air-hybrids are not competitive for urban duty.

Total Energy [kWh]

FUTURE WORK / REFERENCES

Future Work
Hardware validation (tank + expander).
RL assist control.
TCO & sensitivity (mass, expander η).

Compact References (one-line each)

[1] Isbuga C. 2025. HEPV
Re-evaluation. MDPI ECP. [2]
MotorXP 2018. Tesla Model 3
motor report. [3] PSA 2014.
Hybrid Air / MDI technical notes.

CONCLUSION

Validated model proves HEPV non-viable (+2.9 % penalty).

Negative result prevents future wasted R&D