The 3rd International Online Conference on Agriculture

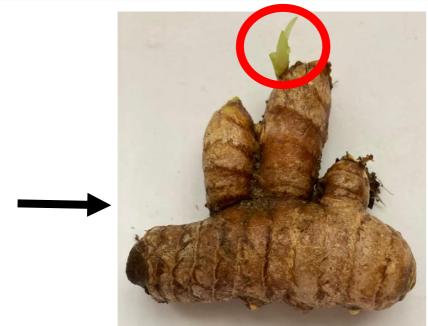
22-24 October 2025 | Online

Efficient In Vitro Propagation Approach for Mass Multiplication of Curcuma longa L (Turmeric)

W. M. A. C. Premasiri, D. L. C. K. Fonseka*

Department of Crop Science, Faculty of Agriculture, University of Ruhuna, Matara, Sri Lanka

Corresponding author *: dlckumari@crop.ruh.ac.lk


INTRODUCTION & AIM

- Mother plant Curcuma longa L. (Turmeric)
- Explant Turmeric rhizome buds
- Importance Rising global demand from the pharmaceutical, cosmetic, and food industries for curcumin, renowned for its potent anti-inflammatory, antioxidant, antimicrobial, and anticancer properties, underscores the importance of efficient turmeric propagation
- **Problem** Conventional rhizome propagation is constrained by low multiplication rates and disease risks, emphasizing the need for an optimized in vitro approach for rapid, large-scale, and resource-efficient plant production
- Aim -
- 1. To optimize an efficient and reliable surface sterilization protocol for rhizome buds to ensure maximum aseptic culture establishment
- 2. To identify the most effective plant growth regulator (PGR) combination that promotes superior shoot induction and robust root development for enhanced *in vitro* propagation efficiency

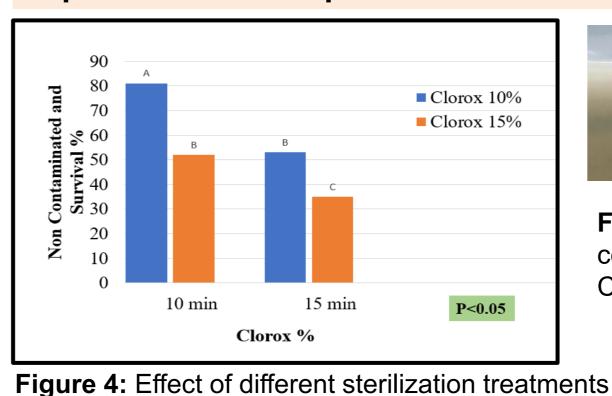
METHOD

Figure 1: *C. longa* rhizomes in a sealed container with sterilized coir dust

Figure 2: Rhizome buds emerging after 3–4 days

 Table 1: Sterilization treatments for explants

Clorox (%)	Time (min)
10	10, 15
15	10, 15


Table 2: Different plant growth regulator combinations on the shooting and rooting of explants

Treatment	Plant growth regulator combinations
T1	1.5mg/L BAP + 0.5mg/L NAA
T2	2.0mg/L BAP + 0.5mg/L NAA
Т3	2.5mg/L BAP + 0.5mg/L NAA
	_

Acclimatization of in vitro plantlets (in progress)

RESULTS & DISCUSSION

Experiment 1 – To optimize the standard sterilization protocol for rhizome buds

on non-contamination and survival % of buds

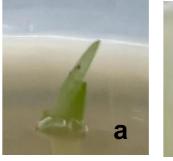
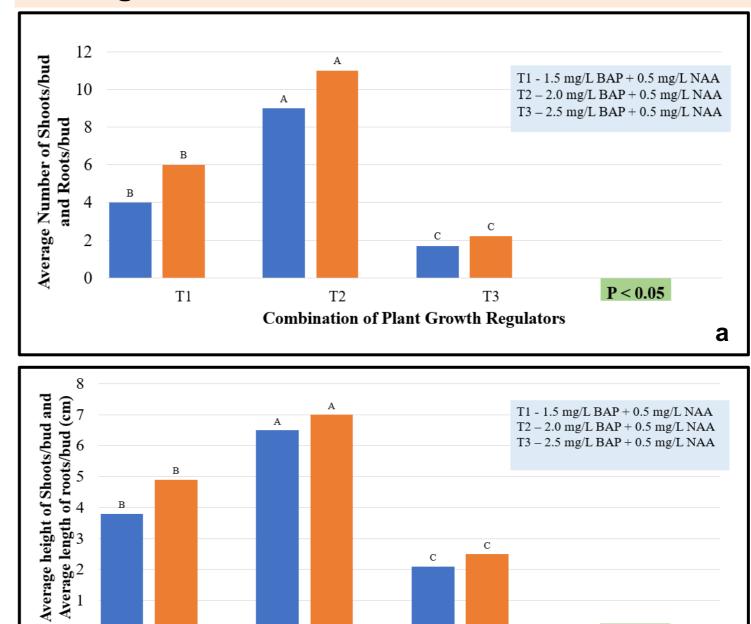
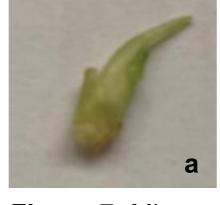



Figure 5: (a) Noncontaminated rhizome bud; (b) Contaminated rhizome bud

Higher Clorox concentration or longer exposure reduced contamination but caused tissue damage, lowering explant survival and regeneration


Experiment 2 - To identify the most effective PGR combination for shooting and rooting

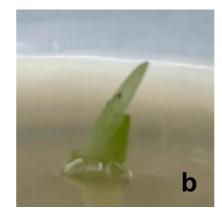
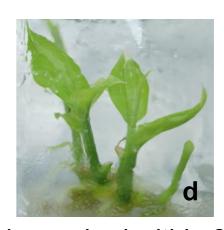


Figure 6: Effect of different plant growth regulator combinations on *in vitro* performance of *C. longa*. (a) Average number of shoots and roots per bud; (b) Average shoot height and root length per bud (cm)


Combination of Plant Growth Regulators

- The combination of 2.0 mg/L BAP + 0.5 mg/L NAA showed the best response for shoot and root formation in Curcuma longa
- BAP promoted shoot initiation and cell division, while NAA enhanced elongation and rooting, activating the effect of BAP for balanced growth
- Higher BAP levels caused callus formation and a lack of NAA reduced rooting
- This combination provided the optimal cytokinin—auxin balance, producing vigorous plantlets suitable for largescale propagation

Figure 7: Micropropagation stages of a single *C. longa* rhizome bud within 8 weeks; (a) Rhizome bud; (b) Inoculation on MS medium; (c) Shoot-root initiation; (d) Multiplication stage; (e) Well-developed *in vitro* plantlet

CONCLUSION

- The optimized *in vitro* protocol using 10% Clorox (10 min) ensured high explant survival and contamination-free cultures, while the 2.0 mg/L BAP + 0.5 mg/L NAA combination promoted vigorous shooting and rooting (p<0.05)
- Strikingly, a single rhizome bud yielded over 50 uniform in vitro plantlets, establishing a rapid, highly efficient system for mass multiplication with elite germplasm conservation

REFERENCES

- Boonprasert, P., Ratanacherdchai, K., & Chanthai, S. (2025). Optimization of micropropagation protocol for turmeric (Curcuma longa L.) cv. Trang 1: Sterilization, shoot proliferation, root induction, and acclimatization. Agronomy, 16(2), 64.
- Foda, M. F. (2024). Effect of sterilization methods and plant growth regulators on tissue culture propagation of turmeric (Curcuma longa L.). *Journal of Horticultural Science*, 49(3), 145–156.
- Boonprasert, P., Ratanacherdchai, K., & Chanthai, S. (2025). Shoot and root induction of turmeric (Curcuma longa L.) using optimized plant growth regulator combinations. *Agronomy*, 16(2), 64.