Department of Agroecology and Plant Production, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; m

Only collective action can help mitigate

### •Water supply is a major global challenge (SDG 6).

### •By 2030 (UN & SDG Projections):

- 2 billion people without safe drinking water
- 3.2 billion facing severe water stress
- Global freshwater demand may exceed supply by up to 40%
- Up to 700 million people displaced due to water scarcity

#### Water = Human & National Security Issue

• Water and food insecurity can trigger social tensions and conflicts

#### Lake Urmia: Shrinking Ecosystem & Vanishing Biodiversity

#### **Key Facts:**

•Second largest hypersaline lake; once ~5,000 km²

•Lost >96% of water volume over the last 20 years

April 2024 water level still lower than 2010

**Biodiversity & Ecosystem Services:** 

•Endemic species: Artemia urmiana (brine shrimp)

•Habitat for migratory birds: Greater Flamingo, Pelican, Redshank, Heron, Gulls, Lapwings

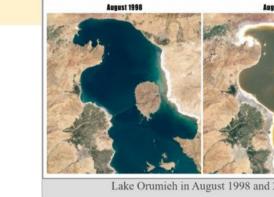
•Provided climate regulation, recreation, mud therapy, tourism

#### Lake Urmia: Shrinking Ecosystem & Vanishing Biodiversity

#### •55–75% of lakebed turned to salt flats

# **Consequences of Drying:**

- Decline in biodiversity
- Salt storms & disease spread
- Collapse of tourism & agriculture, rising unemployment & migration














(Source: NASA Earth Observatory: https://earthobservatory.nasa.gov/images/76327/lake-orumiyeh-iran)

## **Human vs. Climate Factors:**

- Studies show that 65–84% of the lake's water loss is due to human activities, while only 16–35% is related to climatic
- 2. Dam Construction and Mismanagement of Water:
- 23 dams have been built in the lake's watershed, with 15 of them primarily for agricultural use.
- Dams have reduced water inflow to the lake and increased evaporation, leading to severe water shortages.
- 3. Water-Intensive and Unsustainable Agriculture:
- The irrigated area expanded from 200,000 hectares to 500,000 hectares, with cultivation of alfalfa, corn, sugar beet, and apple orchards, which require large amounts of water.
- The uncontrolled development of apple orchards and inefficient irrigation practices have put extreme pressure on water







# 4. Unreleased Environmental Water (Right of the Lake):

Due to decisions by the Ministry of Energy and economic priorities, the lake has not received its full environmental water share, with approximately 2.5 billion cubic meters withheld.

# 5. Construction of the Causeway and Bridge:

The causeway and bridge connecting the northern and southern parts of the lake disrupted natural water flow and damaged the lake's ecosystem.

# **Evaporation and Natural Water Loss:**

About 69–71% of water from precipitation evaporates, a process intensified by dams and reduced water inflow.









#### Importance of Gavkhuni Wetland

Ramsar Site (1971) – International ecological value Habitat for migratory birds & ecotourism potential

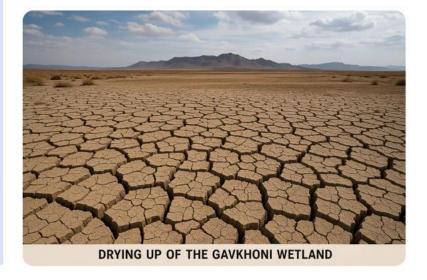
Source of Artemia & medicinal plants Environmental risks if dried:

> Toxic dust (cadmium, zinc, sodium)  $\rightarrow$  4 provinces Health hazards & high economic costs

### **Ecosystem services:**

Carbon absorption

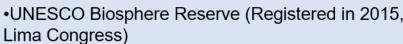
Pollution reduction


Climate moderation



#### Current Situation of Zayandeh Rud River and Gavkhoni Wetland

- √ ~30 years without allocated water rights
- √ >99% of the wetland dried
- ✓ River flow only a few days per year →
- loss of dependent species habitats
- ✓ Drying of green spaces and centuries-old


trees in Isfahan city



#### Main Causes of Gavkhuni Wetland Crisis

- ✓ Inter-basin water transfers from Zayandeh Rud to other provinces & industries (steel, petrochemical)
- $\checkmark$  Severe reduction of inflow o drastic drop in water level
- Destruction of vegetation and bird habitats (over 106 bird species at risk)
- √ Loss of wetland water rights (~173 million m³/year)
- ✓ Mud and salt expansion due to drying (Khodari) Ghariband et al., 2018)
- ✓ Climate change + unsustainable water use intensified
- the crisis (Mollazadeh et al., 2024)





- •Once a lifeline for millions, now mostly dried up •Key Causes:
- •20 years of drought

Decline of Hirmand River flow

- •Poor water management & land leasing to industrial agriculture
- Kajaki Dam & river pumping Major Consequences:
  - Dust storms •Loss of livelihood for ~400,000 Sistani people
  - Decline of native birds & Sistani cattle
  - Damage to agriculture & horticulture •Widespread poverty, insecurity & migration



Source ( NASA Earth Observatory. (2023, January 26). A Dry Lake Hamun Means More Storms. NASA. Retrieved from: https://earthobservatory.nasa.gov/images/150941/ a-dry-lake-hamun-means-more-dust-storms)

# Reviving Indigenous Irrigation Systems

# **Qanat** (Traditional Iranian Water System)





# Hotak - Traditional Water Harvesting in Southwest of Iran

# Benefits:

Drinking water for humans, livestock, wildlife

 Flood and soil erosion control Water for restoration projects

Tree planting & green space enhancement

Employment & livelihood improvement via aquaculture

•Annual desilting & repair needed to maintain storage capacity



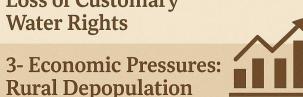




# Ab-Bandan - Traditional Earthen Reservoirs in North of Iran

# **Ecological Role:**

- Support migratory birds (e.g., in Mazandaran, Iran)
- Regulate local hydrology by replenishing shallow aquifers
- Prevent uncontrolled flooding and soil erosion
- Social & Cultural Role:
- Integrated into agro-ecosystems (rice farming, fishing, animal Managed through communal labor and rotational water-use
- Sources of food security and rural resilience


agreements (bonk systems)

# **Causes of Decline of Indigenous Irrigation Systems**

1- Environmental **Drivers: Climate** Variability & **Ecological Stress** 



2- Political & **Institutional Factors: Centralization & Loss of Customary** Water Rights



**4- Socio-Cultural Shifts: Decline of Traditional Knowledge & Social Cohesion** 

& Modernization



# Consequences of Degradation of **Indigenous Irrigation** Systems

1- Groundwater Depletion & Hydrological Imbalance

2- Land Subsidence

& Geomorphological



3- Ecological Collapse

Instability



4- Decline in Agricultural Resilience & Rural Displacement



# **Revival Opportunities Restoring Indigenous Irrigation Systems for** a Resilient Future

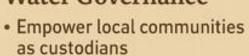
1- Integrating Traditional Knowledge with Modern Technology



2- Community-Based **Institutions & Water Cooperatives** 

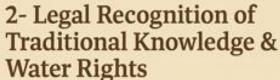
3- Green Economy

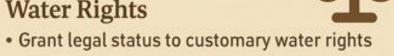
& Aqua-Ecotourism




4- Participatory Water Governance & Policy Reform




# **Conclusion & Policy Implications**


1- Re-establishing Bottom-Up Water Governance



 Integrate water cooperatives & Mirab councils into national strategies

 Ensures fair distribution, conflict prevention, long-term stewardship





- · Provide financial incentives, heritage protection, education & training Supports intergenerational knowledge transfer
- 3- Indigenous Systems as Pathways to Water Security and Sustainable
- Development Adaptive, low-energy solutions for climate change
- Benefits: groundwater recharge, biodiversity
- restoration, rural livelihood resilience
- Contributes to water security, climate mitigation