Integrated hydroponic bioelectrochemical wastewater treatment process for sustainable agriculture

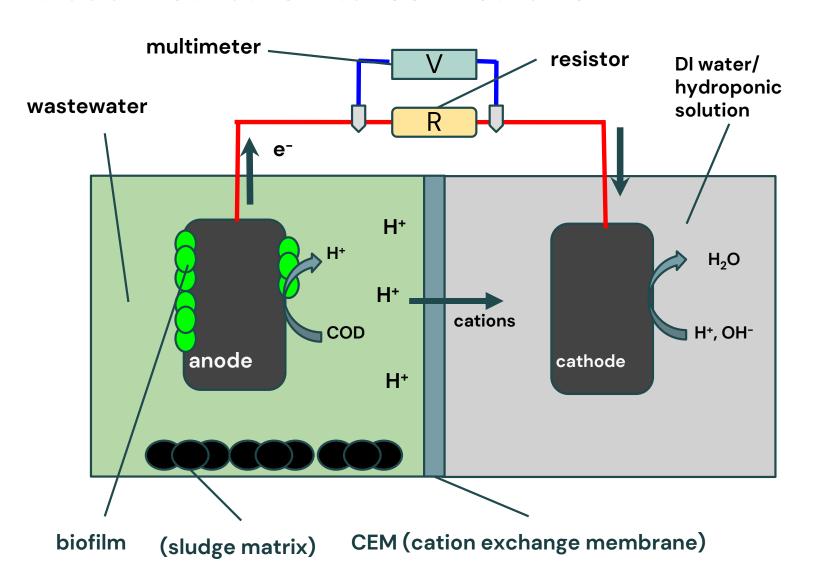
Nachiket Aparajithan Magesh¹, Khin Thandar Tun^{2,3}, Veera Gnaneswar Gude^{1,2,3}

¹Purdue School of Sustainability Eng. and Environmental Eng., ²Purdue Northwest Dept. of Mechanical and Civil Eng., ³Purdue Northwest Water Institute

Introduction and Motivation

Background

- Untreated wastewater effluents can raise nutrient and biomass concentrations in water bodies, causing serious harm to aquatic environments.
- However, conventional municipal wastewater treatment is energy-intensive (2% of total energy consumed in the US).
- Municipal wastewater contains up to 10x the energy needed for its own treatment.
- Hydroponics, a soil-less method of crop cultivation, can aid in and benefit from wastewater treatment.
- This study aims to harness the untapped chemical energy in wastewater using microbial electrochemical cells (MEC)


Typical Wastewater **Pollutants:**

N: NH₃/NH₄⁺, NO₃⁻, NO₂-, Organic **P:** PO₄³⁻, (PO₃-)_n, Organic

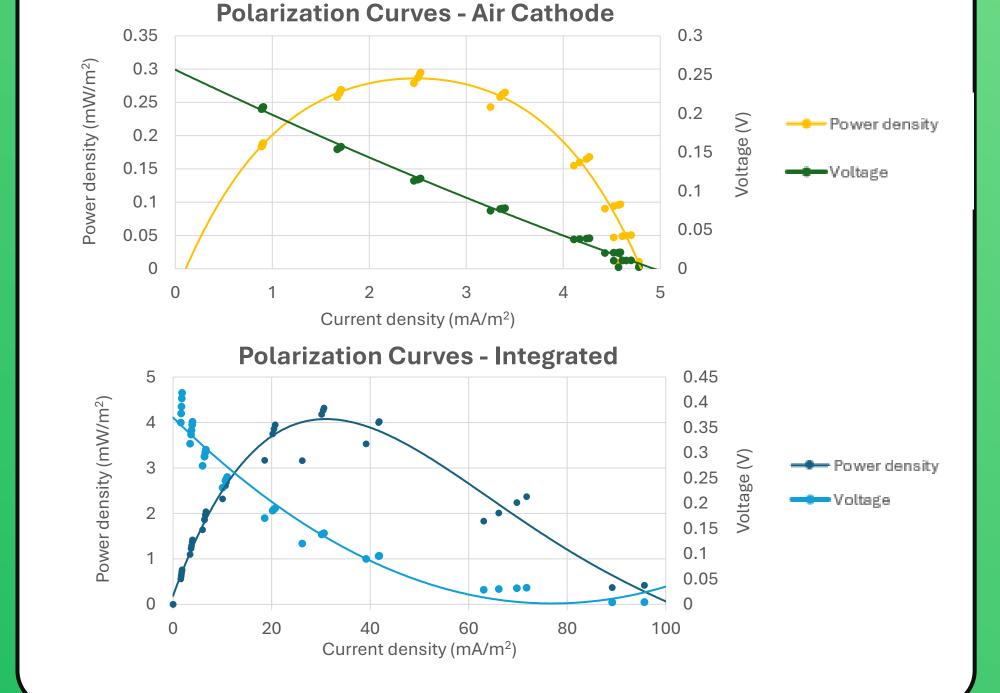
Oxygen-demanding chemicals Suspended solids **Heavy metals**

while boosting hydroponic crop growth.

Microbial Electrochemical Cell Mechanism

- Anode: electroactive bacteria treat pollutants in wastewater (oxidation)
- Membrane: facilitates exchange of ions
- Wires + resistor: conducts electrons (electrical current)
- Cathode: completes the circuit (reduction)

Anion Exchange Membrane (AEM) Transports negatively charged ions


Cation Exchange Membrane (CEM) Transports positively charged ions

Proton Exchange Membrane (PEM) Transports only H+ ions

Air cathode configuration Wastewater (Preliminary) Plugs (promote anaerobicity) Acrylic bioreactor Anode w/ biofilm Cathode Sludge matrix (secondary) 1000 Ω resistor, titanium wire Integrated configuration Light source Sampling Multimeter Lactuca sativa valve (lettuce)

Methods

Results

System Performance

COD Removal Efficiency

- Air cathode: 61%
- Integrated: 57%

Coulombic Efficiency

(CE) Air cathode: 3%

● Integrated: 12%

Air cathode: 54% • Integrated: 47%

- **Peak Voltage**
- Air cathode: 0.10-
- Integrated: 0.16 V

PO₄3- Removal **Efficiency**

• Air cathode: -15%

Plant Growth

(% change, wet wt.)

• Integrated: 25%

• Integrated: 13%

Total N Removal

Efficiency

0.15 V

Discussion

- COD and total nitrogen removal rates
- Integrated system lower, possibly due to reduced concentration gradient and subsequently, inhibited proton exchange
- Higher initial COD concentration correlated with higher removal
- PO₄3- removal rate
- Air cathode: negative removal, likely due to leaching from sludge
- Integrated: positive, likely due to osmosis from anode to cathode and improved assimilation rate by anodic biomass
- Plant growth in integrated design: significant decrease in cathodic total nitrogen and total phosphate suggests plant utilization of nutrients
- Power production: comparable potential despite using cheaper, environmentally-friendly materials

Future Work

- Bipolar membrane (BPM) experiments
- Kinetic analysis of COD removal
- Effect of combined hydroponic-MFC on lettuce growth and treatment times, long-term

Acknowledgments

- I thank the USDA for funding this research through the REEU program.
- I thank my supervisor, Dr. Veera Gnaneswar Gude, and graduate mentor, Khin Thandar Tun, for their support for my research endeavors.

References

- 1. Gude, V. G. (2016). Wastewater treatment in microbial fuel cells an overview. Journal of Cleaner Production, 122, 287–307. https://doi.org/10.1016/j.jclepro.2016.02.022
- 2. Sato, C., Apollon, W., Luna-Maldonado, A. I., Paucar, N. E., Hibbert, M., & Dudgeon, J. (2023). Integrating Microbial Fuel Cell and Hydroponic Technologies Using a Ceramic Membrane Separator to Develop an Energy-Water-Food Supply System. Membranes, 13(9), 803. https://doi.org/10.3390/membranes13090803

Contact: nmagesh@purdue.edu