The 3rd International Online Conference on Agriculture

22-24 October 2025 | Online

Exploring the Biochemical Dynamics of Rice and Rice Leaf Folder (Cnaphalocrocis medinalis) Under **Elevated CO2 Conditions**

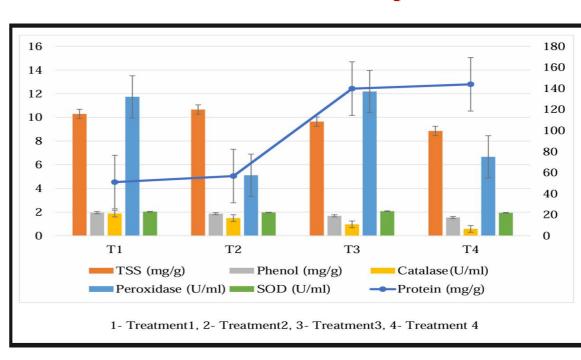
Arya PS*1, Subhash Chander 2, Rajna Salim3, Sachin Suroshe3, Prabhulinga T4, Yogesh Yele 5

- ¹ CCR(PG) College, Muzaffarnagar, Uttar Pradesh, India
- ² ICAR-National Research Centre for Integrated Pest Management, New Delhi, India
 - ³ ICAR- Indian Agricultural Research Institute, New Delhi, India
 - ⁴ ICAR- National Bureau of Agricultural Insect Resources, Bengaluru, India
 - ⁵ ICAR- National Institute of Biotic Stress Management, Raipur, India

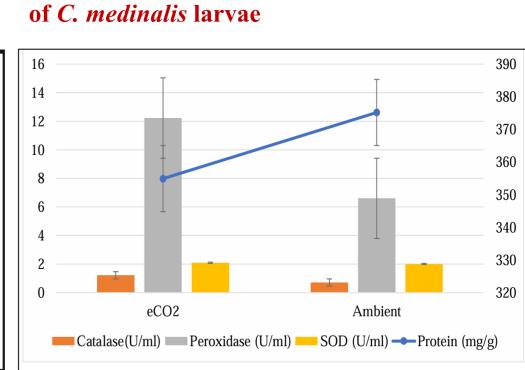
INTRODUCTION & AIM

Rice is the primary staple food for much of the global population, especially in Asia. In India, it is cultivated over 32.87 million hectares, with a production of 135.7 million tonnes in 2022–23 [1].

The rice leaf folder (RLF) (Cnaphalocrocis medinalis) has shifted from being a minor pest to a major threat since the 1980s, causing substantial damage to rice crops. Yield losses can be severe during outbreaks, and even moderate infestations can significantly reduce productivity.


With atmospheric CO₂ projected to reach 570 ppm by the end of the 21st century, climate change is expected to impact insect pests by altering plant nutritional quality, thereby influencing insect growth and development.

Hence, it is important to study the impact of climate change on the biochemical profile of both the rice leaf folder and its host plant, rice.


Effect of eCO₂ on biochemical constituents

RESULTS & DISCUSSION

Effect of eCO₂ and C. medinalis infestation on biochemical constituents of rice plant

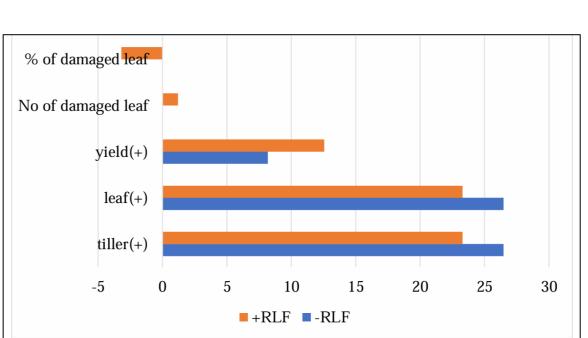
Growth Variations in Rice Under eCO2 With/ Without RLF Infestation

Larval development and leaf damage parameters under eCO₂ conditions

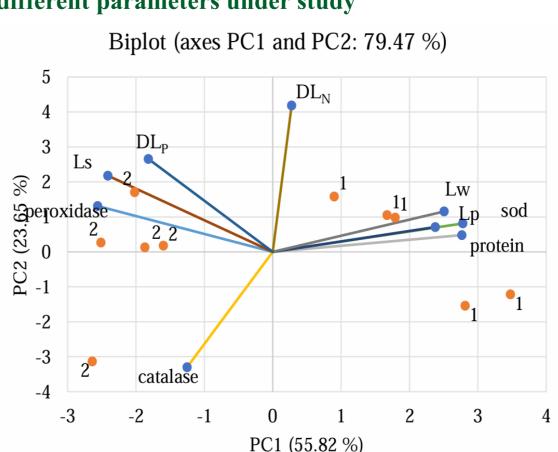
% leaf damage

larval weight

larval survival


larval duration

No. of damaged


% leaf damage

-12.29

No. of damaged leaves

Principle Component Analysis considering different parameters under study

Where Ls- larval survival (%), DL_P- damaged leaf (%), DL_N- number of damaged leaves, Lw- larval weight, Lp- larval period. 1- treatment 1, 2treatment 2.

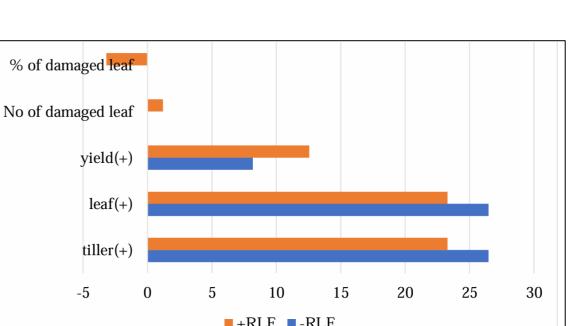
Rice leaf folder grown under eCO2:

• Rise in protective enzyme activities

Number of damaged leaves has

increased while the percentage

damage caused by the larvae


Reduction in larval survival rates

with increase in its duration

(catalase, peroxidase, and SOD)

• Reduction in protein content

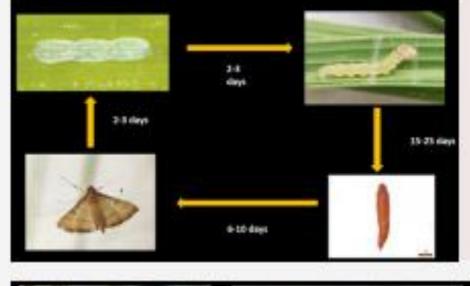
showed a decline.

Rice grown under eCO2:

-21.74

7.41

- Reduction in the protein content,
- Rise in total soluble sugars (TSS), phenol, and catalase activity
- No significant difference in peroxidase and superoxide dismutase (SOD) activities.


Infested rice plants:

- lower protein content
- Higher phenol content, peroxidase, and SOD activity
- No significant difference in the TSS content and catalase activity

PCA was conducted to study the influence of eCO2 on the physico chemical characteristics and damage potential of RLF.

- Two PCs explaining a variation of 79.47% were obtained, with PC1 loadings having for protein, peroxidase, SOD, larval period, larval survival, and larval weight.
- While catalase, number of damaged leaves, and percentage of damaged leaves were loaded in PC2.

METHODOLOGY

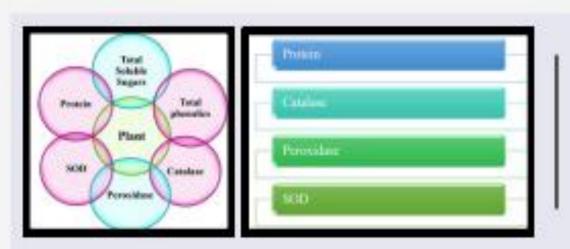
Life Cycle of RLF

Egg: 2-3 days Larva: 15-25 days Pupa: 6-10 days Adult: 2-3 days

Insect rearing

Temperature: 27 ± 1°C RH: 70 ± 5%

Experimental setup


*Facility: Open Top Chamber (OTC), IARI, New Delhi *eCO2-570ppm Design: 5 replications/treatment

2 pots/replication 5 second instar larvae per pot

Treatments

Treatment Code	Conditions
T1	eCO ₂ + Rice Leaf Folder (RLF)
T2	eCO ₂ only
13	RLF only
T4	Ambient Control

Biochemical parameters analysed

REFERENCES

[1] May-os, Ruth. (2024). Top 10 Rice Producing Countries as of 2023-2024.

CONCLUSION

- Rice plants exhibited reduced protein levels but increased sugar and phenol concentrations, the leaf folder larvae display protective enzyme responses despite decreased protein and survival rates.
- The increased leaf damage, paired with lower larval survival, suggests potential changes in pest
- management dynamics. • The PCA analysis revealed that the most impactful variables were clearly distinguished between

two main components, indicating targeted areas for further investigation. These insights emphasize the need to consider complex plant-insect interactions when predicting agricultural responses to climate change