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Abstract: A comprehensive MP2/6-311+G(d,p) and B3LYP/6-311+G(d,p) study of the

aromatic character of phospholes, Pn(CH)4-nPH with  n = 0-4 was conducted. For this

purpose, the structures for these compounds were optimized at both theoretical levels

and different magnetic properties (magnetic susceptibility, χ, magnetic susceptibility

anisotropy, χanis, and the nucleus-independent chemical shifts, NICS) were evaluated.

For comparison, these magnetic properties were also calculated in the optimized

structures with planarity constraints. We have also applied the ACID (anisotropy of the

current-induced density) method in this analysis. The main conclusions are the aromatic

character of these compounds, the relationship between aromaticity and planarity and

the importance of other factors in this aromaticity.
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Introduction

The backbone of classical heterocyclic chemistry is fundamentally formed by five-

membered heterocycles such us pyrroles, furans, and thiophenes together with six-

membered pyridines. Their chemistry has been continuously developed reaching huge

proportions. These molecules have an essential role in biological chemistry and a recent

interest for applied chemistry (as example, doped films of polypyrrole have

electroconducting properties). However, the chemistry of phospholes has been

underdeveloped when compared to its nitrogen, oxygen, and sulphur counterparts. In

fact, the first phosphole has been discovered as late as 1959.1,2

The aromaticity of the phosphole and its derivatives has been one of their most analyzed

properties.3 The potential aromaticity of phosphole was discussed after its first

practically applicable synthesis4 was reported in the 1960s. In different reviews the

nonaromatic behaviour of phosphole was indicated.5-7 This fact was explained in basis

to the pyramidal preference of tricoordinate phosphorus in its compounds.8 

The planarity of the tricoordinate phosphorus can be influenced by substituents. In this

sense, several cases have been studied: π-acceptor groups either at phosphorus or at the

neighbouring carbon,9,10 bulky substituents at phosphorus,11-13etc.

Some studies have analyzed the replacement of the –CH= units in the phosphole by –

P=, resulting polyphospholes.14,15 The main consequence is the decrease of pyramidality

and an enhancement of the aromatic character.14 The recent interest in compounds with

planar or partially planar tricoordinate phosphorus is focused in the relationship

between aromaticity and pyramidality. In this article we discuss this fact but also

introduce new important effects. 



3

It is well know that aromatization affects magnetic properties such as magnetic

susceptibility and its anisotropy, leading to specially negative values for such

properties.16-18 These magnitudes are global properties, which can be affected by parts

of the molecule not directly implicated in the aromaticity. To avoid this problem, the

Nucleus Independent Chemical Shift (NICS) proposed by Schleyer et al. is very useful.

The NICS is defined as the negative of the magnetic shielding19 and it can be evaluated

at any point of the molecule, exhibiting very negatives values in the center of aromatic

rings.

The ACID (anisotropy of the current-induced density) is a new method based on

magnetic properties and developed by Herges and Geuenich.20 This method allows the

visualization of the ring current formed when a magnetic field is applied and permits us

to study the electronic delocalization in molecules.21,22    

Computational details:

The geometry of each structure was optimized with the 6-311+G(d,p) basis set and the

density functional theory (specifically, the Becke3LYP functional)23,24 or MØller-

Plesset perturbation level with the inclusion of energy corrections through second-order

(MP2). All structures were minima as frequency calculations at same level have shown.

In order to evaluated the relationship of planarity with aromaticity, geometries of 1-4b

structures with planarity constraints were optimized at the  B3LYP and MP2 level with

6-311+G(d,p) basis set. These planar structures were transition states.

The anisotropy of magnetic susceptibility values was calculated at the B3LYP/6-

311+G(d,p) level using the IGAIM (Individual Gauges for Atoms in Molecules)

method25,26 on the B3LYP and MP2 optimized structures. In the NICS calculations,
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B3LYP/6-311+G(d,p) level with GIAO (Gauge-independent Atomic Orbital) method27

were employed. 

Finally, CSGT (Continuous Set of Gauge Transformations) method25,26,28 at B3LYP/6-

31+G(d) level of theory was employed in ACID calculations, carried out with the

program supplied by Herges.20

Quantum chemical calculations were carried out with the Gaussian9829 and

Gaussian0330 program packages.

Results and discussion:

Figure 1 shows the polyphosphaphospholes studied in the present work. These

structures, except for the pentaphosphole (5), are no planar. Table 1, collects the

pyramidality data of these structures. The values for different magnetic properties:

anisotropy of the susceptibility (we have chosen this property instead of magnetic

susceptibility due to the inherent problems of this property31) and NICS are shown in

the same Table 1. The NICS criterion is based on the negative of the magnetic shielding

computed at the centre of the ring. Negative values imply aromaticity (diatropic ring

current) and positive values imply antiaromaticity (paratropic ring current). The NICS

values have been obtained at ring critical point as defined by Bader.32 NICS values at

points in the ring plane (NICS(0)) contain important spurious contributions from the in-

plane tensor components that are not related to aromaticity as Schleyer has indicated.33

For this reason, NICS(1) and NICS(-1) values (1 Å above/below the plane of the ring)

are showed in Table 1. These values reflect π effects and they are a better indicator of

the ring current than values in ring plane, because at 1 Å the effects of the local σ-

bonding contributions are diminished. 
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In this sense and in order to obtain a better knowledge about the aromaticity of

phosphole and derivatives, we have also computed the NICS values in points above and

below the plane of the molecule (z-axis). As we can observe in Figure 2, the variation of

NICS along the z-axis is very similar for all  compounds. This representation are in

agreement with a π2 aromaticity.34,35 In the usual π aromaticity the maximum

diamagnetic shielding takes place at a certain distance above and below the molecular

plane, as in this case. This effect can be described by means of two ring currents

circulating at a certain distance from the molecular plane. The figures also indicate the

higher aromatization in the opposite side to the hydrogen atom joined to the phosphorus

atom. These figures are a clear evidence of the aromatic character of phosphole and

derivatives contrary to some studies that suggest a nonaromatic or only slight aromatic

character.

Different studies have looked for a direct connection between planarity and aromaticity

in these compounds. In this sense, the search of more aromatic derivatives of the

phosphole was reduced many times by the search of substituents that produced more

planar structures. In this work we are interested in investigating this connection between

planarity and aromaticity and if other factors should be considered. For this purpose

NICS values all compounds are presented in Table 1 together with pyramidality data.

The pyramidality at the tricoordinate phosphorus atom is measured  by the sum of the

bond angles, Σα. At first sight a good correlation between planarity and aromaticity is

observed. Even so, some details attract attention: the structures for 2a and 2b at

B3LYP/6-31++G(d,p) level have very similar planarity values but its NICS(0) values

differ in nearly two ppm, or, in the case of structures with three phosphorus atoms,  3a

and 3c have similar Σα but very different NICS(0) values. In order to visualize the

correlation between pyramidality and aromaticity, the anisotropy and NICS(1) and
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NICS(-1) values  for all polyphosphaphospholes are plotted against the bond angle sums

(Figure 3). A relation between pyramidality and aromaticity is present but some facts

seem indicate that a deeper analysis is necessary. If the four compounds with three

phosphorus atoms are selected, we can observe that NICS(1) and NICS(-1) values for

3a are more negative than expected values if a perfect correlation between pyramidality

and aromaticity exists at both DFT and MP2 method. This result seems to indicate that

the extension of conjugation is greater when the phosphorus atoms are connected and

the P-H group is in the end of this connection.

Σα(º) χanis /cgs-ppm NICS (0)/ppm NICS (1)/ppm NICS (-1)/ppm

DFT MP2 DFT MP2 DFT MP2 DFT MP2 DFT MP2

1 292.4 294.1 -42.5 -44.0 -5.9 -6.2 -5.6 -5.9 -6.1 -6.5

2a 300.7 308.8 -53.2 -54.6 -7.8 -8.7 -7.2 -7.8 -7.4 -8.4

2b 300.4 302.6 -50.8 -52.5 -5.6 -6.0 -6.7 -7.1 -7.2 -7.6

3a 309.1 318.0 -65.9 -67.9 -8.3 -9.6 -8.2 -9.0 -8.9 -9.9

3b 312.6 321.4 -63.5 -66.0 -7.8 -9.2 -8.3 -9.2 -8.8 -9.9

3c 316.8 328.0 -67.3 -68.7 -9.6 -11.1 -9.0 -9.9 -9.1 -10.4

3d 310.9 317.2 -64.4 -67.6 -6.7 -7.8 -7.9 -8.7 -8.6 -9.4

4a 324.6 337.8 -83.1 -87.4 -10.2 -12.7 -10.0 -11.3 -11.0 -12.5

4b 329.0 339.7 -83.7 -85.8 -11.3 -13.0 -10.7 -11.6 -11.2 -12.4

5 360.0 359.9 -113.0 -111.9 -17.7 -17.6 -15.1 -15.0 -15.1 -15.2

Table 1. Values of Σα and magnetic properties for the optimized structures at B3LYP and
MP2 level.

Similar behaviour is observed if compounds with two atoms of phosphorus are

analyzed. So, the compound 2a with the phosphorus atom linked to P-H group is more

aromatic than compound 2b, even though at B3LYP level the planarity of their

structures is very similar. 

We should remember that the evaluation of the absolute aromaticity of a compound

remains a controversial issue.36 The main reason to this affirmation with regard to the
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magnetic properties as indication of aromatic character is the lack of a reference. For

this reason, we have thought in the use of some system as reference value. Many of

previous works have analyzed the relationship between pyramidality and aromaticity, so

we have chosen the planar structures corresponding to each system as reference

structure. These planar structures are transition states.  Table 2 shows the differences

(∆NICS = NICS (pyramidal compound) – NICS (planar compound)) of the magnetic

properties between the planar and pyramidal structures. As for the absolute values of

magnetic properties, a direct relationship between pyramidality and aromaticity is

complicated. So, one of the structures with a smaller pyramidality (Σα = 337.8), the

compound 4a, presents values even bigger than 3c, a structure with  Σα = 328.0. But,

when the distance between phosphorus atoms is analyzed, the patron is the same

indicated for the absolute values of NICS and even the differences are more significant

(for example, the difference between ∆NICS for structure 3c and 3d is more than 3

ppm). The increase of this effect may indicate that the interaction between phosphorus

atoms is larger in pyramidal structures than in planar structures. 

∆NICS (1)/ppm ∆NICS (-1)/ppm

DFT MP2 DFT MP2

1 5.0 4.8 4.5 4.2

2a 4.6 4.0 4.4 3.4

2b 4.4 4.1 3.9 3.5

3a 4.6 3.8 3.9 2.9

3b 3.9 3.1 3.4 2.4

3c 3.5 2.6 3.4 2.2

3d 4.3 3.8 3.6 3.1

4a 3.8 2.5 2.8 1.3

4b 2.9 1.9 2.4 1.2

Table 2. Difference between NICS for planar and pyramidal structures.
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In order to carry out a deeper study of the aromaticity of the phosphole and these

derivatives, the ACID method was employed. This is a relatively recently published

method to investigate the delocalization and conjugation effects in molecules. It

provides a powerful way to visualize the density of delocalized electrons and quantify

conjugation effects. The ACID approach has several advantages: it is a scalar field

which is invariant with respect to the relative orientation of the magnetic field and the

molecule, it is not a simple function of the overall electron density, it has the same

symmetry as the wave function, and it can be plotted as an isosurface. In our group this

method has been extensively employed in order to distinguish between

pericyclic/pseudopericyclic and coarctate/pseudocoarctate reactivity, differentiation

where the aromaticity has a crucial paper.  

Figure 4 presents the ACID isosurface of the studied polyphosphaphospholes at an

isosurface value of 0.03 au. Current density vectors are plotted onto the ACID

isosurface. The first point to emphasize is that Figure 4 shows a strong diatropic ring

current for all these compounds, indicating their aromatic character. This affirmation is

opposite to other studies that have indicated that the pyramidality of phosphole

prevented the aromaticity. In this figure the importance of the position of the –P= units

with regard to the PH group is clearly shown. In this sense, the most obvious case is the

comparison between 3c and 3d. In the last case the ring current in the P=P zone is

smaller than in other area of the structure. This point may be more clearly observed if

the critical isosurface values, CIV´s, are compared. The CIV´s indicate the isosurface

value at which the topology changes from cyclic to noncyclic. Large CIV´s show

aromaticity or antiaromaticity and small CIV´s show disconnections. So, this values are

a good tool to quantify the extent of conjugation. In this case and as an example, the

structure 3d exhibits the smallest CIV (0.034) indicating a smaller aromaticity than
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other structures with similar Σα ( the CIV for the 3a structure is 0.041). This result is in

agreement with result obtained in the analysis of the NICS values and the important role

of the position of P atoms.

Conclusions:

This work allows to us to indicate the aromatic character of the phosphole and the

studied polyphosphaphospholes. This aromaticity is shown by the negative values of the

magnetic properties, the representation of the variation of NICS along the  z-axis, and

the ACID figures.

It is also interesting to notice the qualitative agreement between MP2 and DFT results.

in order to avoid the problem of lack of reference of the magnetic properties as indicator

of the aromaticity, a model was employed: the magnetic properties of the structures are

compared with the magnetic properties of these planar structures.

The connection between aromaticity and pyramidality is demonstrated through graphics

of magnetic properties versus Σα.

But the main conclusion of this work is the importance for the aromaticity of these

compounds of other aspects apart from the pyramidality. In this sense, the influence of

the position of –P= units has been clearly indicated.
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Figure 1. The polyphosphaphospholes object of the study.
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Figure 2. Variation of NICS along z-axis.  
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Figure 3. Plots of NICS values versus Σα. The area corresponding to structures 3a, 3b, 

3c and 3d is magnified.
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Figure 4. ACID figures for the studied structures.
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