

Agro-morphological characterization, phenotypic trait analysis, and breeding potential of horned melon (Cucumis metuliferus) germplasm for enhanced food security

Moses Mutetwa *, Pepukai Manjeru, Tendai Madanzi, Clapperton Mapwanyire, Tavagwisa Muziri

Department of Agronomy and Horticulture, Midlands State University, P. Bag 9055 Senga, Gweru, Zimbabwe. Email: mosleymtetwa@gmail.com

Background to the study

Global Context: Climate change and food insecurity drive interest in indigenous and underutilized crops as sustainable, climate-resilient alternatives (Mmbando, 2025; Olarewaju et al., 2025).

Crop Importance: Horned melon is a nutrient-rich, drought-tolerant species native to sub-Saharan Africa, showing high adaptability to low-input farming systems **Research Gaps:** Despite its potential, limited data exist on its agro-morphological traits, genetic diversity, and phenotypic associations, hindering improvement and commercialization

Research Focus: The study evaluates phenotypic and agro-morphological diversity among accessions from Mashonaland East, using correlation and regression analyses to identify key yield determinants.

Significance: Findings will support climate-smart breeding, genetic conservation, domestication, and commercial valorization of *C. metuliferus*, strengthening sustainable agriculture in sub-Saharan Africa.

Materials and Methods

Study Area and Experimental Design

Location: Midlands State University, Gweru (19°45'S, 29°84'E), Natural Region III, Zimbabwe (2024/2025 season).

Climate & Altitude: Mean annual rainfall ~674 mm; average temperature 18°C; altitude 1428 m a.s.l.

Soils: Sandy loams (fersialitic group, kaolinite dominant); slightly acidic (pH 5.9) with organic C 1.54%, nitrate-N 6.23 ppm, and N:C ratio 0.25.

Germplasm Collection and Preparation

Samples: 24 accessions collected from natural and cultivated populations in Mashonaland East Province.

Seed extraction: Wet method — ripened fruits softened at room temperature, pulp squeezed in water, jelly removed using mutton cloth, seeds washed, shade-dried, and stored.

Rationale: Ensured high-quality, mature, and contamination-free seed stock for experimental use.

Experimental Procedure

Seed Germination: Conducted under controlled lab conditions on moistened filter paper in petri dishes (5 replicates × 100 seeds/accession).

Field Establishment: Pre-germination by soaking seeds in warm water (12 h), planted in pots (35 cm × 16 cm) with 5 kg soil + 300 g cattle manure + 10 g Compound D (7:14:7 NPK).

Design: Randomized Complete Block Design (RCBD) with three replicates.

Data collection: Agro-morphological traits recorded throughout the growth cycle:

Days to germination-GE, Days to emergence-DE, Vine length (cm) -VL, Number of branches-NB, Days to female flower-DFF, Days to male flower-DMF, Days to Maturity-DM, Fruit length (cm)-FL, Fruit width (cm)-FW, Fruit weight (cm)-FWT, Number of Fruits-NF, Number of thorns-NT, Number of seeds-NS, 100-seed weight (g)-100-WT, Yield plant-1 (kg)-YD,

Analyses performed:

One-way ANOVA to assess differences among landraces.

Tukey's post-hoc test ($p \le 0.05$) to identify significant mean differences.

Linear regression and Pearson correlation to determine trait relationships and yield associations.

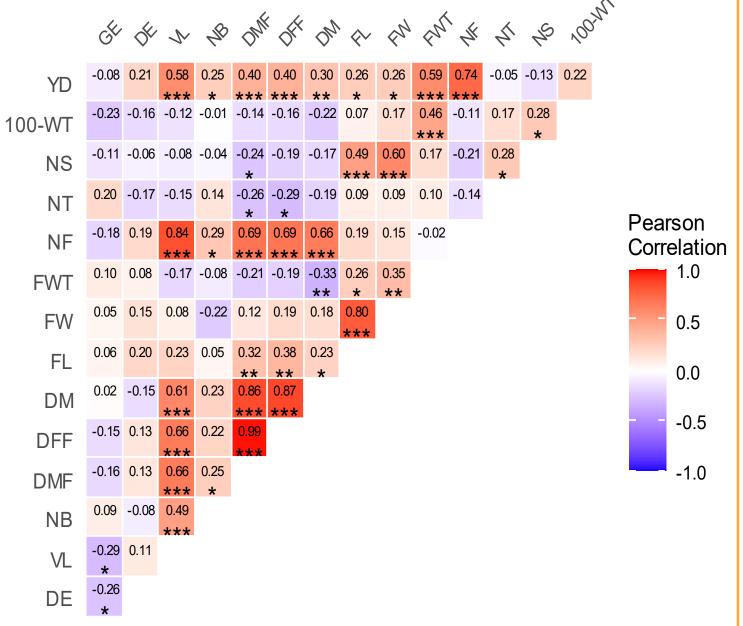
Visualization: Graphical outputs and trend analysis generated using R Studio.

Results and Key findings

Summary of Agro-Morphological Variability in Horned Melon

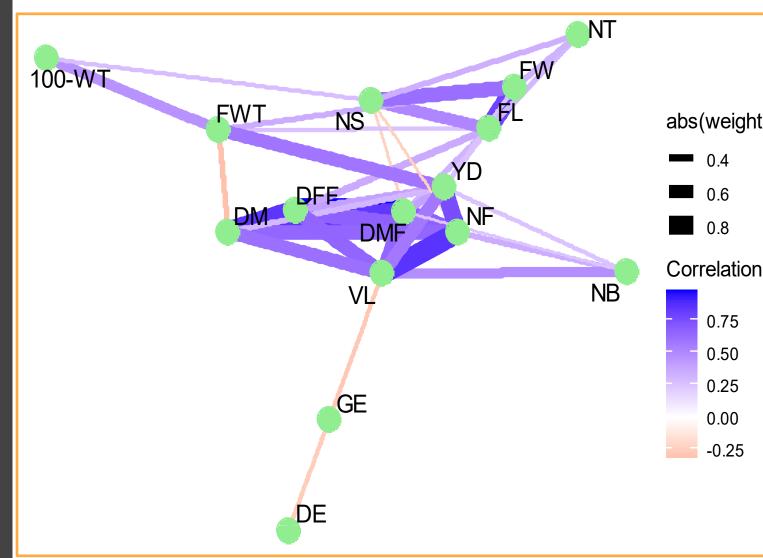
Highly significant variation (p < 0.001) observed across 15 traits among 24 horned melon accessions.

Early growth performance varied widely, with *Acc8, Acc2,* and *Acc11* showing superior germination and *Acc18* and *Acc17* producing the longest vines.


Flowering and maturity timing ranged broadly, from early (*Acc1, Acc3*) to late (*Acc6, Acc16, Acc24, Acc8, Acc14*) accessions.

Fruit traits showed marked diversity in size, weight, and fruit number, with *Acc20* and *Acc5* outperforming others.

Seed yield and quality differed significantly, with *Acc20* and *Acc23* producing the most seeds and *Acc16* and *Acc17* showing the heaviest seed weights.


Table 1. The quantitative agro-morphological attributes of horned melon (*C. metuliferus*) for the Combined Seasons. Abbreviations (see Data collection section)

Acc No.	GE	DE	VL	NB	DFF	DMF	DM	FL	FW	FWT	NF	NT	NS	100-WT	YD
Acc1	92.83 ^{gh}	7.0 ^{abc}	241.7 ^{abc}	12.11 ^{ef}	54.67a	52.83a	112.8ª	10.39 ^{bc}	6.60 ^{bcde}	385.8 ^{jk}	7.50 ^a	58.00 ^{defgh}	349.8 ^{cd}	0.947 ^{defg}	2.877 ^{bcde}
Acc2	95.87 ^{gh}	8.2 ^{abcde}	260.6 ^{fgh}	14.39 ^{jklm}	69.50 ⁱ	67.33 ^m	137.8 ^{mn}	13.01 ^{efgh}	8.03 ^{ghij}	372.5 ^{ijk}	12.67 ^{cdef}	58.67 ^{efgh}	370.3 ^{defghi}	1.147 ^{ghi}	4.738gh
Acc3	86.20 ^f	7.1abcd	248.7 ^{bcd}	14.22 ^{ijkl}	57.33 ^b	56.83 ^{bc}	118.3 ^{bcd}	8.26a	4.97 ^a	198.7 ^{ab}	6.94ª	35.75 ^b	305.0 ^b	0.867 ^{cdef}	1.427 ^a
Acc4	72.97 ^a	10.0 ^e	237.4ª	12.78 ^{fg}	58.50 ^b	56.83bc	115.8 ^{ab}	10.86 ^{bcd}	7.03 ^{bcdefg}	309.3 ^{fg}	7.66ª	67.25 ^{hi}	358.5 ^{cdef}	1.052 ^{fghi}	2.849 ^{bcde}
Acc5	72.73 ^a	9.0 ^{abcde}	278.3 ^{kl}	13.50 ^{ghij}	61.33 ^{de}	59.33 ^{cdef}	121.7 ^{def}	9.46 ^{ab}	6.23 ^b	402.0k	15.44 ^{fg}	38.50 ^b	300.3b	1.112 ^{ghi}	6.235 ⁱ
Acc6	76.20 ^{abc}	7.5 ^{abcde}	266.6ghij	12.17 ^f	72.17 ^j	71.00 ⁿ	141.0 ^{no}	11.75 ^{cdefg}	6.52 ^{bc}	282.7 ^{def}	14.22 ^{efg}	58.83 ^{efgh}	307.2 ^b	1.127 ^{ghi}	4.00 ^{6efgh}
Acc7	78.83 ^{bcd}	7.9 ^{abcde}	251.8 ^{def}	15.00 ^{klm}	60.83 ^{cde}	57.83 ^{bcd}	121.7 ^{def}	13.78 ^h	6.58 ^{bcd}	267.0 ^{cde}	7.28 ^a	48.67 ^{cd}	370.5 ^{defghi}	0.825 ^{bcdef}	1.933 ^{ab}
Acc8	97.57 ^h	7.7 ^{abcde}	275.3 ^{jkl}	14.00 ^{hijk}	65.50 ^{gh}	63.17 ^{hij}	142.0°	13.23 ^{fgh}	8.15 ^{hij}	310.9 ^{fg}	16.33 ^g	64.33 ^{ghi}	309.9 ^b	0.700 ^{abc}	5.045 ^h
Acc9	91.57 ^g	9.7 ^{cde}	283.7lm	15.22 ^{lmn}	62.33 ^{ef}	60.67 ^{efgh}	124.7 ^{efgh}	13.84 ^{hi}	7.90 ^{ghij}	285.7 ^{def}	14.83 ^{fg}	56.75 ^{defg}	367.6 ^{defgh}	0.843 ^{bcdef}	4.293 ^{fgh}
Acc10	92.50gh	8.2abcde	240.7 ^{abc}	13.11 ^{fgh}	63.83 ^{fg}	61.33 ^{fghi}	127.5ghi	13.01 ^{efgh}	7.82 ^{fghij}	280.0 ^{def}	8.28 ^{ab}	49.75 ^{cde}	350.7 ^{cde}	0.780 ^{bcde}	2.387 ^{abc}
Acc11	94.57gh	7.8abcde	240.0 ^{ab}	10.61 ^{bcd}	61.33 ^{de}	58.00 ^{bcde}	125.2 ^{fgh}	12.36 ^{defgh}	8.00ghij	283.7 ^{def}	7.11 ^a	62.75 ^{fghi}	377.0 ^{fghi}	0.967 ^{defgh}	2.019 ^{abc}
Acc12	75.50 ^{ab}	7.1abcd	258.6 ^{efg}	10.95 ^{cd}	62.50 ^{ef}	60.33 ^{defg}	131.3 ^{ij}	11.51 ^{cdef}	7.68 ^{efghij}	277.6 ^{def}	9.44 ^{abc}	50.00 ^{cde}	373.0 ^{efghi}	1.273 ⁱ	2.689 ^{bcd}
Acc13	79.53 ^{bcde}	6.6 ^a	281.8 ^l	14.94 ^{klm}	66.00 ^{gh}	63.50 ^{ij}	140.8 ^{no}	11.21 ^{bcde}	7.80 ^{fghij}	258.5 ^{cd}	14.50 ^{efg}	64.00 ^{ghi}	372.2 ^{defghi}	0.783 ^{bcde}	3.739 ^{defg}
Acc14	83.88 ^{def}	6.8 ^{ab}	271.3 ^{ijk}	10.61 ^{bcd}	65.00 ^{gh}	62.83 ^{ghij}	142.0°	10.68 ^{bcd}	6.75 ^{bcdef}	162.4a	12.33 ^{cdef}	53.67 ^{cdef}	351.4 ^{cde}	0.638 ^{ab}	2.056abc
Acc15	79.47 ^{bcde}	7.6abcde	281.0 ^l	16.17 ^{no}	66.50 ^h	64.50 ^{jkl}	136.7lm	12.88 ^{efgh}	7.77 ^{fghij}	266.9 ^{cde}	14.11 ^{efg}	71.00 ⁱ	384.5ghij	1.017 ^{fgh}	3.746 ^{defg}
Acc16	84.53 ^{ef}	10.2 ^e	267.2ghij	10.22 ^{bcd}	68.83 ⁱ	67.00 ^{lm}	132.2 ^j	11.85 ^{cdefg}	7.03 ^{bcdefg}	236.8bc	13.28 ^{efg}	68.83 ⁱ	270.7 ^a	0.550 ^a	3.129 ^{cdef}
Acc17	74.77 ^{ab}	8.1 ^{abcde}	292.2 ^{mn}	16.50°	68.83 ⁱ	66.83 ^{lm}	136.3 ^{klm}	13.05 ^{fgh}	7.63 ^{defghij}	253.5 ^{cd}	15.55 ^{fg}	53.17 ^{cdef}	338.2 ^c	1.275 ⁱ	4.000 ^{efgh}
Acc18	76.83 ^{abc}	9.1 ^{abcde}	293.0 ⁿ	15.44 ^{mno}	68.83 ⁱ	66.33 ^{klm}	132.5 ^{jk}	10.99 ^{bcd}	6.43 ^b	204.1 ^b	15.39 ^{fg}	64.17 ^{ghi}	366.0 ^{defgh}	0.650 ^{abc}	3.166 ^{cdef}
Acc19	72.87 ^a	9.1 ^{abcde}	268.6 ^{hij}	9.89 ^{bc}	65.83 ^{gh}	64.00 ^{ijk}	128.0 ^{hi}	13.92 ^{hi}	7.93 ^{ghij}	301.6 ^{efg}	12.33 ^{cdef}	67.83 ^{hi}	389.2 ^{hij}	0.995 ^{efgh}	3.750 ^{defg}
Acc20	73.33 ^a	9.7 ^{cde}	282.2 ^l	13.28 ^{ghi}	69.00 ⁱ	66.83 ^{lm}	133.0 ^{jkl}	15.66 ⁱ	9.32 ^k	352.9hij	13.00 ^{defg}	54.83 ^{cdefg}	418.2 ^k	0.828 ^{bcdef}	4.571gh
Acc21	77.73 ^{abc}	8.6abcde	262.6ghi	9.55 ^{ab}	59.17 ^{bcd}	56.00 ^b	117.2 ^{bc}	13.45 ^{gh}	8.72 ^{jk}	332.2gh	11.22 ^{bcde}	53.17 ^{cdef}	402.3 ^{jk}	1.180 ^{hi}	3.746 ^{defg}
Acc22	74.70 ^{ab}	9.8 ^{de}	249.8 ^{cde}	11.00 ^d	58.67 ^{bc}	56.17 ^b	123.7 ^{efg}	10.47 ^{bc}	7.60 ^{cdefghi}	229.6bc	9.61 ^{abcd}	45.00 ^{bc}	365.0 ^{defg}	0.833 ^{bcdef}	2.252 ^{abc}
Acc23	81.30 ^{cdef}	7.5abcde	239.6ab	8.5 ^a	59.17 ^{bcd}	56.83bc	121.0 ^{cde}	12.34 ^{defgh}	8.65 ^{ijk}	336.3ghi	8.00 ^{ab}	70.08 ⁱ	392.3 ^{ij}	1.052 ^{fghi}	2.711 ^{bcd}
Acc24	74.40 ^{ab}	9.4 ^{bcde}	277.9 ^{kl}	11.05 ^{de}	72.00 ^j	69.00 ^{mn}	138.8 ^{mno}	11.73 ^{cdefg}	7.28 ^{bcdefgh}	260.0 ^{cd}	14.28 ^{efg}	0.00a	309.1b	0.742 ^{abcd}	3.695 ^{defg}
p-value	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
LSD _{0.05}	2.710	1.436	4.788	0.570	1.215	1.467	2.121	0.952	0.569	20.505	1.820	5.201	11.678	0.119	0.6132

Abbreviations (see Data collection section) Asterisks denote statistical significance: * indicates significance at p < 0.05 ** at p < 0.01 *** at p < 0.001

Figure 1. A pairwise Pearson correlation analysis among 15 agromorphological traits of horned melon (C. metuliferus) accessions.

Abbreviations (see Data collection section)

Figure 2. Trait correlation network for 15 agro-morphological traits of horned melon (C. metuliferus) accessions

Breeding Implications

Vine length (VL), fruit weight (FWT), and fruit number (NF) strongly determine yield (R² = 0.93).

Synchronized flowering (r = 0.99) enhances reproductive efficiency and uniform maturity.

Yield prediction: VL, NF, and FWT are reliable selection indices.

Early traits (GE, DE) show weak yield links—lower breeding priority.

Integrated selection for vegetative vigor and fruit traits supports climate-smart breeding.

Summary: Key Findings on *C. metuliferus*

High genetic diversity (p < 0.001) among 24 accessions highlights strong potential for breeding climate-resilient, high-yielding cultivars.

Vegetative traits (vine length, branching) and phenological variation influence yield and adaptability to diverse environments (

Elite accessions (Acc5, Acc8, Acc2, Acc20) showed superior yield and fruit traits, while Acc24's thornlessness improves handling.

Yield correlated strongly with fruit number (r = 0.76**) and weight (r = 0.59**); synchronized flowering (r = 0.99**) enhances fruit set.

Breeding focus: prioritize vine vigor, fruit biomass, and reproductive synchrony to develop climate-smart, marketable horned melon cultivars.

Conclusion

Yield strongly correlated with vine length, branch number, fruit number, and synchronized flowering.

- · Early growth traits had weak yield correlations but are crucial for good crop establishment.
- Fruit weight and width were better predictors of yield than fruit length.
- · Seed traits had minimal effect on yield, suggesting potential for separate improvement.
- High-performing accessions (Acc5, Acc8, Acc1, Acc24) show strong potential for breeding resilient, nutrient-rich cultivars