

AFLATOXIGENIC ASPERGILLUS FLAVUS CONTAMINATION

Grâce Arielle Mpoam Miague ¹, Pierre Germain Ntsoli ¹˚, Idriss Djoko Kouam ¹˚, Roland Wilfried Titti ¹, and Aoudou Yaouba ¹˚ 1 Department of Crop Sciences, Faculty of Agronomy and Agricultural Sciences, University of Dschang, Cameroon

INTRODUCTION

Groundnut (Arachis hypogaea L.) is a vital legume crop providing high-quality protein and essential nutrients. However, production faces significant challenges:

- Aflatoxin contamination by Aspergillus flavus poses serious health risks
- Climate change and drought stress reduce yields
- Chemical inputs cause environmental and health concerns

Research objective: Evaluate the potential of Bacillus strains as sustainable biofertilizers and biocontrol agents for enhanced groundnut production and reduced A. flavus contamination

METHODS

Study Location: University of Dschang Research Farm and Phytopathology laboratory, Cameroon (Tropical highland climate, Oxisols, Altitude: 1,400m)

Workflow

Biological Strains

- Bacillus thuringiensis B9 & Bacillus pacificus **B11** (Isolated from tomato rhizosphere)
- Aspergillus flavus (Toxigenic strain for antagonism

Antagonism Assays (In Vitro)

- Circular confrontation Direct colony interaction
- Horizontal confrontation Side-by-side growth
- Poisoned medium Bacterial metabolite effects

Field Trial Treatments

(T1: Control, T2: Poultry manure + DAP, T3: Bacillus pacificus B11, T4: Bacillus pacificus B11)

CONCLUSION

Bacillus pacificus B11 shows strong promise as a biofertilizer and biocontrol agent. Its capacity to enhance groundnut production while simultaneously reducing Aspergillus flavus contamination in soil and potentialy pre-harvest aflatoxin B1 contamination offers a sustainable alternative to chemical inputs, contributing to safer, higherquality food production and reduced public health risks.

Agricultural Implications: Potential for developing commercial bio-inoculants for sustainable groundnut production in tropical regions

RESULTS

Upon completion of these antagonism assays, the most effective percentage of growth inhibition of the toxigenic Aspergillus flavus was significantly (p < 0.05) high for the B. pacificus B11 strain, with 83.9% achieved through the circular confrontation method, 67.7% via the poisoned medium method, and 64.5% by horizontal confrontation. In contrast to B. pacificus B11, the B. thuringiensis B9 strain showed an inhibition percentage of 67.7% for circular confrontation, 48.4% for the poisoned medium method, and 35.5% for horizontal confrontation. The circular confrontation method was demonstrably the most effective approach for evaluating the antagonistic potential of the two strains examined.

Figure 1: Inhibition percentage of B. pacificus B11 and B. thuringiensis B9 on toxigenic Aspergillus flavus

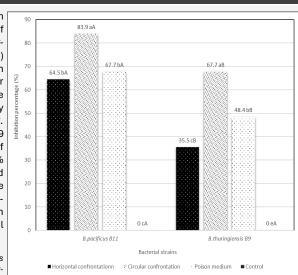


Figure 2: View of toxigenic A.flavus (A), horizontal confrontation (${f B}$), circular confrontation (C), poison medium culture

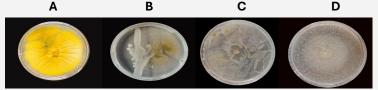


Table 1: Effect of treatment on germination, growth, biomass, yield and toxigenic A.flavus population in the soil.

Treatments	Control	Poultry manure	Bacillus	Bacillus
Variables		+ DAP	pacificus B11	thuringiensis B9
Germination rate (%)	76.1	64.6	87.5	65
Vigor index	2478	3001	2668	2619
Plant height (Cm)	37.00	39.40	38.00	36.90
Collar diameter (Cm)	66.60	75.80	69.60	70.20
Number of branches	9.30	9.60	9.78	9.32
Leaf area (Cm²)	1619	1630	1612	1531
Root length (Cm)	14.50	14.20	15.80	16.20
Aboveground biomass (t.ha ⁻¹)	27.20	35.90	35.60	31.50
Belowground biomass (t.ha ⁻¹)	8.77	10.40	9.85	8.98
Number of pods	26	29.00	40	26
Dry yield (t.ha ⁻¹)	2.75	3.01	4.61	3.08
Initial A.flavus population (CFU.g ⁻¹)	4.34 x 10 ⁶			
Final A.flavus population (CFU.g ⁻¹)	5.5 x 10 ⁶	3.9 x 10 ⁶	1.88 x 10 ⁶	7 x 10 ⁵

