

28-30 October 2025 | Online

Adsorption of natural pigments of mushroom wastes using a heavy metal-nickel

Gamze Özçakır

Department of Chemical Engineering, Faculty of Engineering, Bilecik Şeyh Edebali University, TR 11100, Bilecik, Türkiye; gamze.ozcakir@bilecik.edu.tr

INTRODUCTION & AIM

Agricultural waste management is crucial to the scope of the zero-waste strategy.

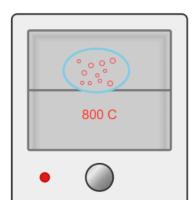
Cotton, rice, and mushrooms are agricultural materials that produce waste.

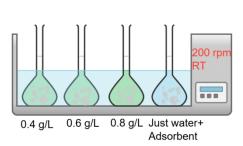
After its harvesting, 70% of the edible mushrooms are relased as waste.

Mushroom waste can be utilized in fertilising, animal feeding, energy, and wastewater treatment applications.

Figure 1. The importance of removing edible mushroom waste [1]

- > Mushrooms have natural pigments to be utilized in pharmaceutical, cosmetic, food, and textile industries [2].
- > This study adopted an unusual approach. A heavy metal was used as an adsorbent to remove the natural dye of spent mushrooms.


METHOD


Figure 2. Photos represented the spent mushroom collection and adsorption

Mushrooms purchased from a local market.

Stalks and caps of the mushrooms were collected, dried, and calcinated to 800 °C under static air.

Adsorption conducted in a water bath with 0.1 g calcinated spent mushroom waste at a 200 rpm shaking rate at room temperature.

UV-VIS was used to analyze the mushroom pigment concentration against time at a 400 nm wavelength.

Figure 3. The details for the method used in the study

RESULTS & DISCUSSION

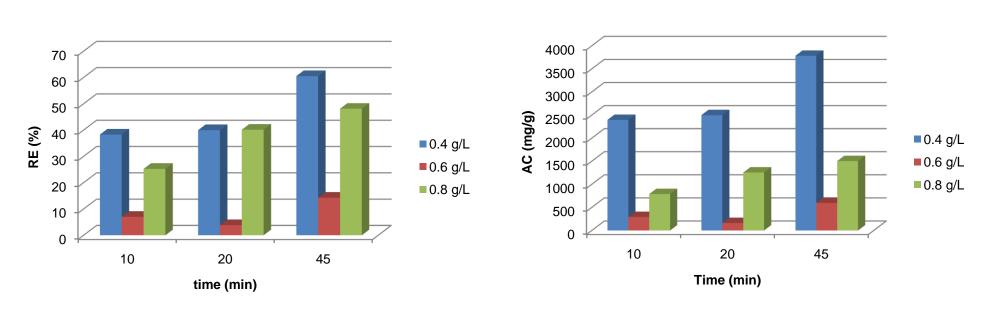


Figure 4. Removal Efficiency (RE, %) and Adsorption Capacity (AC, mg/g) values for different initial Ni(II) solution concentrations

- ➤ Maximum RE and AC values were obtained at 0.4 g/L Ni(II) solution concentration and 45 min adsorption time, as 61% and 3783 mg dried mushroom pigment/g Ni(II).
- ➤The most suitable kinetic model for all studied initial Ni(II) solution concentrations was determined as Pseudo 2nd Order (R²≥0.9).

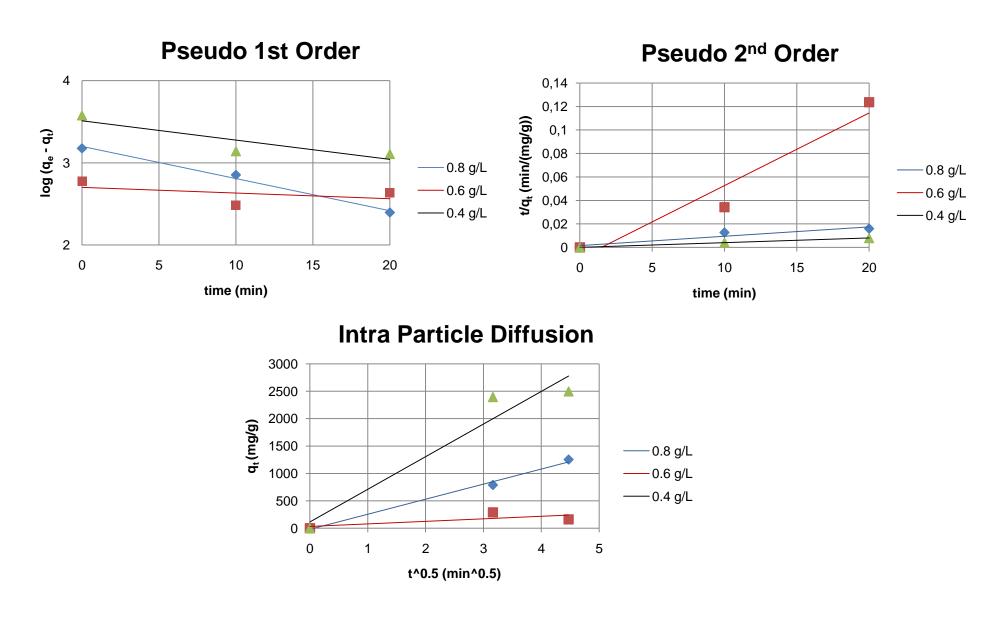


Figure 5. Determination of the most suitable kinetic model with the data

Table 1. Calculated R² values for the selected models

Kinetic Model	0.4 g/L	0.6 g/L	0.8 g/L
Pseudo 1st Order	0.803	0.222	0.990
Pseudo 2nd Order	0.999	0.938	0.896
Intra Particle Diffusion	0.937	0.536	0.992

CONCLUSION & FUTURE WORK

- Utilizing both an agricultural waste and a heavy metal in the adsorption seemed like an environmentally friendly solution to degrade waste pollution.
- > The following studies will be about desorbing the natural dye from the adsorbent Nickel.
- ➤Other metals can be utilized for removing pigments of Mushroom waste from the water.

REFERENCES

[1] Umor et al. (2021). *Journal of Material Cycles and Waste Management*, 23(5), 1726-1736. [2] Téllez-Téllez & Díaz-Godínez (2022). *Biomolecules from natural sources: Advances and applications*, 82-100.