

Evaluating the Aqueous Extraction of Phenolic Compounds from Olive Tree Pruning

Universidad de Jaén

Luis Carlos Morán-Alarcón^{1,2}, María del Mar Contreras^{1,2*}, Alfonso M. Vidal^{1,2}, Cristina Marzo-Gago^{1,2}, Irene Gómez-Cruz^{1,2}, Juan Miguel Romero-García^{1,2} and Eulogio Castro^{1,2}

¹Dept. Chemical, Environmental and Materials Engineering. Universidad de Jaén; lmoran@ujaen.es; mcgamez@ujaen.es; <a href

* Correspondence: mcgamez@ujaen.es

INSTITUTO DE INVESTIGACIÓN EN BIORREFINERÍAS

Introduction

Olive-derived biomass, including olive tree pruning (OTP), is abundant in the Mediterranean region. This type of biomass contains interesting bioactive phenolic compounds with applications in food, cosmetics and pharmacy [1]. Its recovery depends on the extraction technology, which determines the yield, phenolic profile and industrial viability [2]. This work aims to evaluate and compare three aqueous extraction strategies (Soxhlet, autoclave and pressurized reactor) for obtaining phenolic compounds from OTP.

Methodology

Raw material

Olive tree pruning: Jaén, Spain Drying and milling Particle size: 1 cm Moisture: 5.8 %

Soxhlet

0.25 L 4% w/v Boiling, 24 h

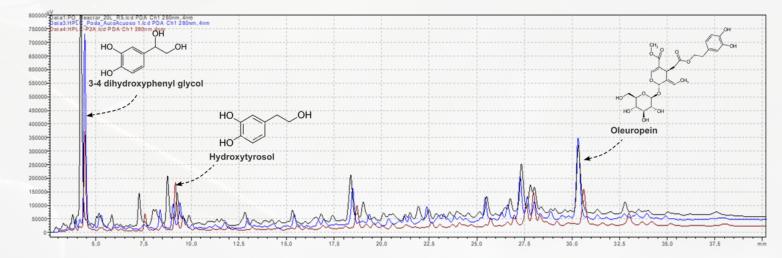
Autoclave

1 L 15% w/v 120 °C, 1 h

Pressurized reactor

20 L 20% w/v 120 °C, 1 h

Conclusions


- Aqueous extraction at 120 °C enables the recovery of phenolic compounds from OTP in shorter times than Soxhlet.
- Higher solid loads enhance the scalability of the process.
- This operation can be integrated into biorefinery schemes to obtain high-value phenolics along with other bioproducts.

Results

- Soxhlet achieved the highest total phenolic compounds (TPC) (~3800 mg GAE/100 g).
- Reactor and autoclave showed lower TPC yields, but present potential for scalability.
- Soxhlet favored the extraction of 3,4-dihydroxyphenyl glycol (3,4-DHPG) and hydroxytyrosol; the reactor outperformed the autoclave for these compounds.

Soxhlet	Autoclave	Pressurized reactor
3810 mg/100g	1524 mg/100g	1251 mg/100g
705 mg/100g 402 mg/100g 299 mg/100g	358 mg/100g164 mg/100g21 mg/100g	343 mg/100g255 mg/100g72 mg/100g
Total phenol Oleurope	ein 3,4-dihydroxypho glycol	enyl Hydroxytirosol

• The chromatograms showed similar phenolic profiles among the extraction strategies, highlighting key compounds such as hydroxytyrosol, 3,4-DHPG, and oleuropein.

References

[1] Gómez-Cruz, I.; Contreras, M.d.M.; Romero, I.; Castro, E. Towards the Integral Valorization of Olive Pomace-Derived Biomasses through Biorefinery Strategies. ChemBioEng Rev. 2024, 11, 253–277.

[2] Sezer Okur, P.; Okur, I. Recent Advances in the Extraction of Phenolic Compounds from Food Wastes by Emerging Technologies. Food Bioproc. Tech. 2024, 17, 4383–4404, doi:10.1007/s11947-024-03365-5.

Acknowledgments

Pre-doctoral grants for the training of research personnel under Action 8.a) of the Operational Plan to Support Research at the University of Jaén (UJA) (2021-2022), UJA (action 7, Postdoctoral grant 2022/00400/001), the grant DGP_POST_2024_00733 from the Andalusian Government. Project`s PID2023-149614OB-C21, funded by the "Ministerio de Ciencia, Innovación y Universidades" MICIN/AEI/10.13039/501100011033 and by FEDER, UE, and the grant "Juan de la Cierva" JDC2022-049264-I. "Instituto de Estudios Giennenses" BOP No. 42 dated February 29, 2024).