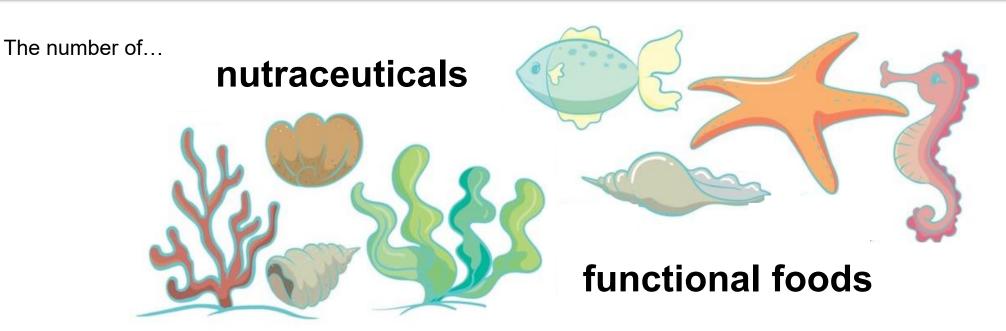
The 6th International Electronic Conference on Foods

28-30 October 2025 | Online

Filling the gap on Grateloupia turuturu and Porphyra umbilicalis nutritional and functional profiling: red seaweeds as sustainable alternatives to terrestrial crops

João Ferreira^{1,2,*}, Marcos Trigo³, Carlos Martins-Gomes¹, Santiago P. Aubourg³, Ricardo Prego⁴, Luís M. M. Ferreira^{1,2}, Mário Pacheco⁵, Amélia M. Silva¹, Isabel Gaivão²

¹ Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal ² Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal


³ Department of Food Technology, Marine Research Institute (CSIC), c/ Eduardo Cabello 6, 36208 Vigo, Spain

⁴ Department of Oceanography, Marine Research Institute (CSIC), c/ Eduardo Cabello 6, 36208 Vigo, Spain

⁵ Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

* joaommf93@hotmail.com

INTRODUCTION AND AIMS

...from marine origin is increasing in the worldwide market [1].

...have shown their potential considering...

bioactive compounds

nutritional value

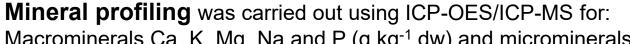
Nevertheless, it is pertinent to explore knowledge gaps regarding their **nutritional composition** and bioactivities.

The main objectives of this work included the determination of *G. turuturu* and *P. umbilicalis* proximate composition, mineral profile and neuroprotective and immunostimulatory activities.

METHODS

For nutritional analyses

Seaweeds **proximate composition** was determined as:

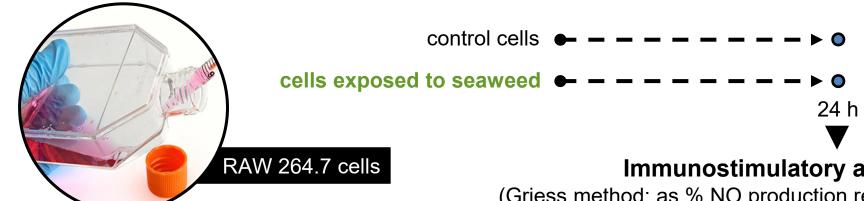

Dry matter,

Ash, Organic matter,

Crude protein (Kjeldahl method),

Crude lipid (gravimetric method),

Total fibre (TDF), Soluble fibre (SDF), Insoluble fibre (IDF) (enzymatic kit assay), Total-soluble carbohydrates (TSC) (anthrone method), (as % dw) [3].



Macrominerals Ca, K, Mg, Na and P (g kg⁻¹ dw) and microminerals B, Fe, I, Mn and Zn (mg kg⁻¹ dw).

For evaluation of bioactivities

Seaweeds were freeze-dried and hydroethanolic and water (infusion and decoction) extracts were prepared for the evaluation of:

Acetylcholinesterase (AChE) inhibitory activity (Ellman's method; % inhibition AChE) [4].

Immunostimulatory activity

(Griess method; as % NO production relative to control) [5].

RESULTS AND DISCUSSION

Proximate composition

Table 1. Proximate composition of *G. turuturu* and *P. umbilicalis*.

Proximate composition	Seaweed species	
	Grateloupia turuturu	Porphyra umbilicalis
Ash (% dw)*	30.98 ± 0.18	21.61 ± 0.40
Organic matter (% dw)*	69.02 ± 0.18	78.39 ± 0.40
Crude protein (% dw)*	20.16 ± 0.48	22.32 ± 0.24
Crude lipid (% dw)	1.52 ± 0.05	1.52 ± 0.05
TDF (% dw)	40.15 ± 3.88	48.22 ± 3.45
SDF (% dw)*	27.00 ± 3.40 ^a	15.07 ± 2.35 ^b
IDF (% dw)*	13.15 ± 0.48 ^a	33.14 ± 1.10 ^b
TSC (% dw)*	7.77 ± 0.41	18.96 ± 0.61

Abbreviations: dw, seaweed dry weight; TDF, total dietary fibre; SDF, soluble dietary fibre; IDF, insoluble dietary fibre; TSC, total-soluble carbohydrates. * significant (p < 0.01) differences between seaweed species for each parameter. * significant (p < 0.01) < 0.005) differences amongst SDF vs. IDF for *G. turuturu* and *P. umbilicalis*, respectively. Data in **bold** display the parameter with the greatest content for each species (p < 0.001).

Mineral profile

• Sodium was the most abundant macromineral in both species, while zinc and iodine were among the most abundant **microminerals** in *G. turuturu* and **iron** in *P. umbilicalis*;

A literature-anchored comparison of nutritional value with **conventional agricultural crops** (wheat, white rice, tomatoes) showed greater **protein**, **fibre** and **mineral** contents in *G. turuturu* and *P. umbilicalis* [6].

AChE inhibitory activity

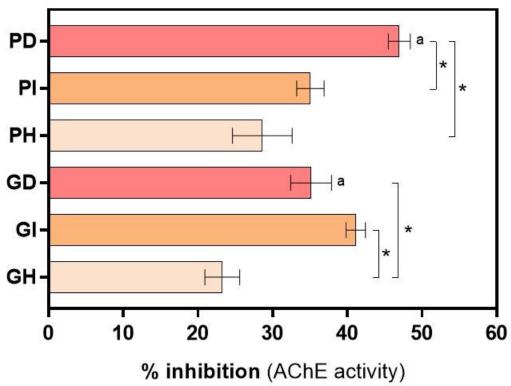


Fig. 1. AChE inhibitory activity (as % inhibition of blank) of G. turuturu and P. umbilicalis hydroethanolic (GH and PH, respectively), infusion (GI and PI, respectively) and decoction (GD and PD, respectively) extracts (at 1 mg mL⁻¹). * significant (p < 0.001) differences among extracts of the same species; a **60** significant (p < 0.001) difference between the aqueous decoctions of both species.

Immunostimulatory activity

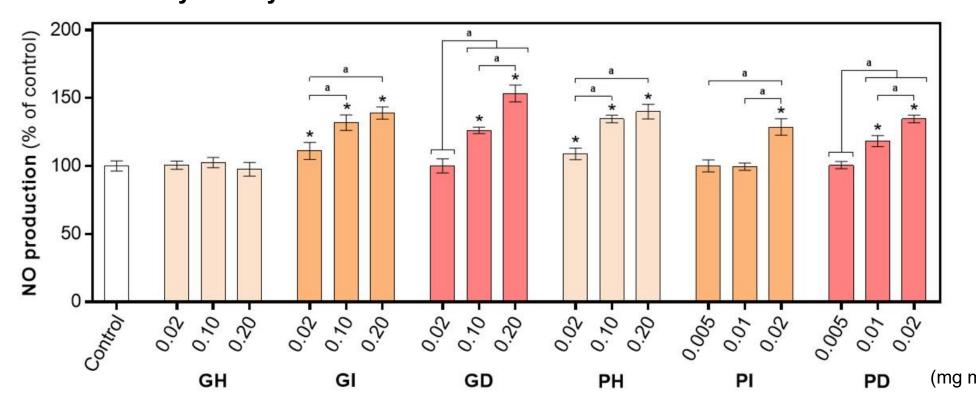


Fig. 2. Immunostimulatory activity of *G. turuturu* and *P. umbilicalis* hydroethanolic (GH and PH, respectively), infusion (GI and PI, respectively) and decoction (GD and PD, respectively) extracts. Results are expressed in % nitric oxide (NO) production relative to control. * significant (p < 0.05) differences in relation to control; a significant (p < 0.001) differences among concentrations of the same seaweed extract.

CONCLUSIONS

- Unlike conventional agricultural crops, which have a considerable environmental footprint, these seaweeds can grow without requiring land, freshwater or chemical inputs, while providing higher levels of protein, fibre and minerals.
- These results reinforce the potential of G. turuturu and P. umbilicalis as promising functional food, highlighting their relevance as sustainable, nutrient-rich resources with promising neuroprotective and immunostimulatory properties.

REFERENCES

- [1] J. Cotas, A. Leandro, D. Pacheco, et al., Life, 10 (2020).
- [2] A. Lähteenmäki-Uutela, M. Rahikainen, M. Camarena-Gómez, et al., Aguaculture International, (2021).
- [3] Official Methods of Analysis of AOAC International. G. W. Latimer (Ed.), Rockville, AOAC International, 2019. [4] M. Taghouti, C. Martins-Gomes, J. Schäfer, et al., Food and Function, 9 (2018).
- [5] A. Silva, C. Martins-Gomes, E. Souto, et al., Antioxidants, 9 (2020).
- [6] J. Ferreira, M. Trigo, S. P. Aubourg, et al., European Food Research and Technology, 251 (2025).